{"title":"Numerical continuation and stationkeeping of quasi-periodic quasi-satellite orbits","authors":"Xiaoyu Fu , Nicola Baresi , Roberto Armellin","doi":"10.1016/j.actaastro.2025.09.065","DOIUrl":null,"url":null,"abstract":"<div><div>Quasi-satellite orbits (QSOs) have been under the research spotlight due to their linear stability and potential to remain in close proximity to the secondary body in a restricted three-body system. In this research, the numerical continuation and stationkeeping method of quasi-periodic QSOs is investigated based on the Poincaré section. By means of Differential Algebra (DA) techniques, a DA-enhanced numerical method for computing quasi-periodic orbits is proposed. This method is formulated to solve for the invariant curve of a quasi-periodic torus on a Poincaré section. An enhanced Poincaré map, which is established with DA techniques, effectively reduce the problem dimensionality and promote computational efficiency. A family of quasi-periodic QSOs around Phobos are continued to validate the proposed method. A subsequent stationkeeping approach adapted from the Target Phase Approach (TPhA) is tailored for the maintenance of generated quasi-periodic QSOs. A stochastic optimisation scheme for the adapted TPhA method is formulated in search for fuel-optimal and error-robust stationkeeping parameters. Stationkeeping simulations for the achieved quasi-periodic QSO family are provided to showcase the effectiveness of the adapted TPhA method.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"238 ","pages":"Pages 997-1014"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525006423","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-satellite orbits (QSOs) have been under the research spotlight due to their linear stability and potential to remain in close proximity to the secondary body in a restricted three-body system. In this research, the numerical continuation and stationkeeping method of quasi-periodic QSOs is investigated based on the Poincaré section. By means of Differential Algebra (DA) techniques, a DA-enhanced numerical method for computing quasi-periodic orbits is proposed. This method is formulated to solve for the invariant curve of a quasi-periodic torus on a Poincaré section. An enhanced Poincaré map, which is established with DA techniques, effectively reduce the problem dimensionality and promote computational efficiency. A family of quasi-periodic QSOs around Phobos are continued to validate the proposed method. A subsequent stationkeeping approach adapted from the Target Phase Approach (TPhA) is tailored for the maintenance of generated quasi-periodic QSOs. A stochastic optimisation scheme for the adapted TPhA method is formulated in search for fuel-optimal and error-robust stationkeeping parameters. Stationkeeping simulations for the achieved quasi-periodic QSO family are provided to showcase the effectiveness of the adapted TPhA method.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.