{"title":"AI-aided Automated AR-Assisted Assembly Instruction Authoring and Generation method","authors":"Junjian Lin, Jianjian Wang, Pingfa Feng, Xiangyu Zhang, Dingwen Yu, Jianfu Zhang","doi":"10.1016/j.jmsy.2025.08.019","DOIUrl":null,"url":null,"abstract":"<div><div>While Augmented Reality (AR) offers the potential to provide real-time guidance, one of the barriers to its adoption in industrial assembly is the lack of fast, no-code, intelligent methods for generating AR-assisted assembly programs. This paper proposes an AI-aided AR-Assisted Assembly Instruction Authoring and Generation method (ARAIAG) to address these challenges. ARAIAG allows engineers, without coding expertise, to intuitively design AR-assisted assembly instructions based on assembly demonstrations captured through RGBD cameras. Based on ARAIAG, we propose a new algorithm considering hand manipulation and model characteristics to achieve spatial registration for models, virtual-physical fusion, and assembly direction recognition. Additionally, we employed a novel human–computer interaction method and Large Language Model (LLM)-assisted content generation to achieve the automatic creation of interactive and instructive AR-assisted assembly programs. Through this approach, we streamline program development and enable more efficient AR-assisted assembly in dynamic manufacturing environments.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"83 ","pages":"Pages 405-423"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525002183","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
While Augmented Reality (AR) offers the potential to provide real-time guidance, one of the barriers to its adoption in industrial assembly is the lack of fast, no-code, intelligent methods for generating AR-assisted assembly programs. This paper proposes an AI-aided AR-Assisted Assembly Instruction Authoring and Generation method (ARAIAG) to address these challenges. ARAIAG allows engineers, without coding expertise, to intuitively design AR-assisted assembly instructions based on assembly demonstrations captured through RGBD cameras. Based on ARAIAG, we propose a new algorithm considering hand manipulation and model characteristics to achieve spatial registration for models, virtual-physical fusion, and assembly direction recognition. Additionally, we employed a novel human–computer interaction method and Large Language Model (LLM)-assisted content generation to achieve the automatic creation of interactive and instructive AR-assisted assembly programs. Through this approach, we streamline program development and enable more efficient AR-assisted assembly in dynamic manufacturing environments.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.