Geochronological and geochemical insights into episyenite metasomatic overprint in the Proterozoic Suomenniemi rapakivi granite complex (Finland)

IF 2.5 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Adam Abersteiner , O. Tapani Rämö , Alkis Kontonikas-Charos , Melissa Kharkongor , Nikolaos Karampelas , Sarah E. Gilbert , Ben Wade , Karolina Ambroziak-Murzyn , Jarred C. Lloyd , Christoph Beier , Stijn Glorie
{"title":"Geochronological and geochemical insights into episyenite metasomatic overprint in the Proterozoic Suomenniemi rapakivi granite complex (Finland)","authors":"Adam Abersteiner ,&nbsp;O. Tapani Rämö ,&nbsp;Alkis Kontonikas-Charos ,&nbsp;Melissa Kharkongor ,&nbsp;Nikolaos Karampelas ,&nbsp;Sarah E. Gilbert ,&nbsp;Ben Wade ,&nbsp;Karolina Ambroziak-Murzyn ,&nbsp;Jarred C. Lloyd ,&nbsp;Christoph Beier ,&nbsp;Stijn Glorie","doi":"10.1016/j.lithos.2025.108269","DOIUrl":null,"url":null,"abstract":"<div><div>Rapakivi granites from the late Paleoproterozoic Suomenniemi Complex (south-eastern Finland) experienced pervasive localised metasomatism via interaction of high-temperature, oxidising peralkaline fluids and granite along dyke-like zones, resulting in the formation of episyenite bodies. To constrain the timing and conditions of episyenite formation, we combine in-situ U<img>Pb zircon, U<img>Pb and Lu<img>Hf apatite, and U<img>Pb titanite geochronology with petrography and mineral chemistry from four episyenite bodies. Zircon yields U<img>Pb ages coeval with crystallisation of the ca. 1644 Ma granite, preserving the igneous protolith age, whereas U<img>Pb ages from hydrothermally modified zircon (1635.1 ± 2.7 Ma; 1627.8 ± 6.3 Ma) and apatite (1611.6 ± 9.5 Ma; 1630 ± 19 Ma), along with hydrothermal titanite (1603 ± 43 Ma; 1623 ± 30 Ma) record younger ages, reflecting variable degrees of disturbance of the U<img>Pb system and indicating that episyenite formation post-dated granite emplacement. Apatite Lu<img>Hf ages (1648 ± 30 Ma; 1643 ± 41 Ma) and some titanite U<img>Pb ages (1646 ± 12 Ma; 1642 ± 62 Ma) overlap with the host granite but their large uncertainties preclude confident attribution to either magmatic crystallisation or subsequent metasomatism. Collectively, these data indicate that episyenitisation postdated granite emplacement and was likely driven by regional thermal perturbations linked to the emplacement of the ∼1630 Ma Wiborg Batholith.</div><div>Petrographic and mineral chemistry analyses of zircon, apatite, and titanite indicate that hydrothermal alteration of the protolith was highly variable, both between episyenite bodies and even over small metre-scale intervals within individual bodies. This is evident in zircon, where different areas of high intensity hydrothermal alteration under high temperature and oxidising conditions resulted dissolution and reprecipitation of zircon. Apatite in the host granite was likely recrystallised during episyenitisation, as evidenced by textural modification and younger U<img>Pb ages. Titanite is an accessory mineral found exclusively within the episyenite bodies and is absent in the surrounding granite protolith. It commonly occurs as inclusions in mafic mineral aggregates or as rims around Fe<img>Ti oxides (magnetite, ilmenite), suggesting a hydrothermal origin associated with episyenitisation and crystallisation under oxidising conditions. Variations in the major (Al, Fe, Ti, F) and trace element (light REE, Nb) chemistry of titanite and Zr-in-titanite thermometry (660–875 °C) further indicate differences in hydrothermal fluid composition and temperatures during titanite formation across different episyenite bodies. These findings, along with the overlapping ages of hydrothermal titanite and the host protolith, suggest that the episyenites in the Suomenniemi Complex formed by fluid-rock interaction, either shortly after consolidation of the main granite sequence of the complex and/or during subsequent regional rapakivi granite magmatism. Thus, resolving the timing of episyenite formation is crucial for understanding fluid-assisted alteration of granitic systems, identifying potential fluid sources, and assessing their geochemical evolution and metallogenic potential.</div></div>","PeriodicalId":18070,"journal":{"name":"Lithos","volume":"516 ","pages":"Article 108269"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithos","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493725003287","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapakivi granites from the late Paleoproterozoic Suomenniemi Complex (south-eastern Finland) experienced pervasive localised metasomatism via interaction of high-temperature, oxidising peralkaline fluids and granite along dyke-like zones, resulting in the formation of episyenite bodies. To constrain the timing and conditions of episyenite formation, we combine in-situ UPb zircon, UPb and LuHf apatite, and UPb titanite geochronology with petrography and mineral chemistry from four episyenite bodies. Zircon yields UPb ages coeval with crystallisation of the ca. 1644 Ma granite, preserving the igneous protolith age, whereas UPb ages from hydrothermally modified zircon (1635.1 ± 2.7 Ma; 1627.8 ± 6.3 Ma) and apatite (1611.6 ± 9.5 Ma; 1630 ± 19 Ma), along with hydrothermal titanite (1603 ± 43 Ma; 1623 ± 30 Ma) record younger ages, reflecting variable degrees of disturbance of the UPb system and indicating that episyenite formation post-dated granite emplacement. Apatite LuHf ages (1648 ± 30 Ma; 1643 ± 41 Ma) and some titanite UPb ages (1646 ± 12 Ma; 1642 ± 62 Ma) overlap with the host granite but their large uncertainties preclude confident attribution to either magmatic crystallisation or subsequent metasomatism. Collectively, these data indicate that episyenitisation postdated granite emplacement and was likely driven by regional thermal perturbations linked to the emplacement of the ∼1630 Ma Wiborg Batholith.
Petrographic and mineral chemistry analyses of zircon, apatite, and titanite indicate that hydrothermal alteration of the protolith was highly variable, both between episyenite bodies and even over small metre-scale intervals within individual bodies. This is evident in zircon, where different areas of high intensity hydrothermal alteration under high temperature and oxidising conditions resulted dissolution and reprecipitation of zircon. Apatite in the host granite was likely recrystallised during episyenitisation, as evidenced by textural modification and younger UPb ages. Titanite is an accessory mineral found exclusively within the episyenite bodies and is absent in the surrounding granite protolith. It commonly occurs as inclusions in mafic mineral aggregates or as rims around FeTi oxides (magnetite, ilmenite), suggesting a hydrothermal origin associated with episyenitisation and crystallisation under oxidising conditions. Variations in the major (Al, Fe, Ti, F) and trace element (light REE, Nb) chemistry of titanite and Zr-in-titanite thermometry (660–875 °C) further indicate differences in hydrothermal fluid composition and temperatures during titanite formation across different episyenite bodies. These findings, along with the overlapping ages of hydrothermal titanite and the host protolith, suggest that the episyenites in the Suomenniemi Complex formed by fluid-rock interaction, either shortly after consolidation of the main granite sequence of the complex and/or during subsequent regional rapakivi granite magmatism. Thus, resolving the timing of episyenite formation is crucial for understanding fluid-assisted alteration of granitic systems, identifying potential fluid sources, and assessing their geochemical evolution and metallogenic potential.
芬兰Suomenniemi rapakivi元古代花岗岩杂岩交代叠印的年代学和地球化学意义
来自芬兰东南部晚古元古代Suomenniemi杂岩的Rapakivi花岗岩通过高温氧化过碱性流体与花岗岩沿脉状带的相互作用,经历了广泛的局部交代作用,形成了辉长岩体。为了约束辉长岩的形成时间和条件,我们结合了4个辉长岩体的原位UPb锆石、UPb和LuHf磷灰石、UPb钛矿年代学与岩石学和矿物化学特征。锆石的UPb年龄与约1644 Ma花岗岩的结晶同步,保留了火成岩原岩年龄,而热液变质锆石(1635.1±2.7 Ma; 1627.8±6.3 Ma)和磷灰石(1611.6±9.5 Ma; 1630±19 Ma)以及热液钛矿(1603±43 Ma; 1623±30 Ma)的UPb年龄记录了更年轻的年龄,反映了UPb系统的不同程度的扰动,表明辉长岩形成于花岗岩侵位之后。磷灰石LuHf年龄(1648±30 Ma; 1643±41 Ma)和一些钛矿UPb年龄(1646±12 Ma; 1642±62 Ma)与宿主花岗岩重叠,但它们的巨大不确定性排除了将其归因于岩浆结晶或随后的交代作用的确定性。总的来说,这些数据表明,渐长岩化推迟了花岗岩的就位时间,并且很可能是由与~ 1630 Ma Wiborg岩基就位相关的区域热扰动驱动的。锆石、磷灰石和钛矿的岩石学和矿物化学分析表明,原岩的热液蚀变具有高度的差异性,无论是在辉长岩体之间,还是在单个体内的小尺度间隔内。这在锆石中表现得很明显,在高温和氧化条件下,不同区域的高强度热液蚀变导致了锆石的溶解和再沉淀。寄主花岗岩中的磷灰石可能在辉长岩化过程中再结晶,这可以从结构改变和较年轻的UPb年龄中得到证明。钛矿是一种辅助矿物,只存在于辉长岩体中,不存在于周围的花岗岩原岩中。它通常以包裹体的形式出现在基性矿物聚集体中,或以铁钛氧化物(磁铁矿、钛铁矿)周围的边缘出现,表明它的热液起源与氧化条件下的辉长岩化和结晶有关。钛矿的主要化学成分(Al、Fe、Ti、F)和微量元素(轻REE、Nb)化学成分的变化以及钛矿中Zr-in-titanite的测温(660 ~ 875℃)进一步表明了不同辉长岩体中钛矿形成过程中热液组成和温度的差异。这些发现以及热液钛矿与寄主原岩的重叠年龄表明,苏门涅米杂岩中的辉长岩是在杂岩主花岗岩序列固结后不久或随后的区域拉帕基花岗岩岩浆作用中形成的流体-岩石相互作用。因此,确定辉长岩的形成时间对于认识花岗岩系统的流体辅助蚀变、识别潜在的流体来源、评价其地球化学演化和成矿潜力具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lithos
Lithos 地学-地球化学与地球物理
CiteScore
6.80
自引率
11.40%
发文量
286
审稿时长
3.5 months
期刊介绍: Lithos publishes original research papers on the petrology, geochemistry and petrogenesis of igneous and metamorphic rocks. Papers on mineralogy/mineral physics related to petrology and petrogenetic problems are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信