{"title":"Mercury's early thermal evolution and core formation in the presence of impact-generated atmosphere during accretion","authors":"Gurpreet Kaur Bhatia, Sumit Sankhyan","doi":"10.1016/j.pss.2025.106201","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding a planet's early thermal evolution and differentiation is crucial to comprehending the distribution of volatiles in its different reservoirs. Mercury is now known as a volatile rich planet. It has carbon saturated core, deeply buried volatile rich layers, a diamond layer at the core-mantle boundary and graphite floating at the crust. For carbon saturation, Mercury is believed to have accreted from Enstatite/CB chondrite rich building blocks. In the present work, we studied the early thermal evolution and core formation in the interior of Mercury by considering its accretion from water rich Enstatite chondrites prior to the dispersal of solar nebula. The heat sources for the melting and differentiation of Mercury include the decay energy of SLR <sup>26</sup>Al and the blanketing effect of the impact generated H<sub>2</sub>O+CO+H<sub>2</sub> along with primordial atmosphere. The results suggest the complete core formation with lowest assumed water content in the building blocks Mercury for accretion timescales ≤1.5 Myr after the formation of CAIs. The longer accretion timescales, it needed higher abundance of water to cause significant blanketing effect at the surface. During differentiation process, the volatiles dissolved in the magma ocean under the pressure of overlying atmosphere, could partition into the core. Hence, the outcomes of present study have implications to explain the distribution of volatile in the interior of Mercury. Conversely, under the strong blanketing effect, the surface silicate could vaporize and dissolve in the steam atmosphere.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"268 ","pages":"Article 106201"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325001680","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding a planet's early thermal evolution and differentiation is crucial to comprehending the distribution of volatiles in its different reservoirs. Mercury is now known as a volatile rich planet. It has carbon saturated core, deeply buried volatile rich layers, a diamond layer at the core-mantle boundary and graphite floating at the crust. For carbon saturation, Mercury is believed to have accreted from Enstatite/CB chondrite rich building blocks. In the present work, we studied the early thermal evolution and core formation in the interior of Mercury by considering its accretion from water rich Enstatite chondrites prior to the dispersal of solar nebula. The heat sources for the melting and differentiation of Mercury include the decay energy of SLR 26Al and the blanketing effect of the impact generated H2O+CO+H2 along with primordial atmosphere. The results suggest the complete core formation with lowest assumed water content in the building blocks Mercury for accretion timescales ≤1.5 Myr after the formation of CAIs. The longer accretion timescales, it needed higher abundance of water to cause significant blanketing effect at the surface. During differentiation process, the volatiles dissolved in the magma ocean under the pressure of overlying atmosphere, could partition into the core. Hence, the outcomes of present study have implications to explain the distribution of volatile in the interior of Mercury. Conversely, under the strong blanketing effect, the surface silicate could vaporize and dissolve in the steam atmosphere.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research