A deep learning-based maneuvering target tracking with temporal convolutional networks

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Xia , Shurui Zhang , Yuhang Hu , Renli Zhang , Song Li , Weixing Sheng
{"title":"A deep learning-based maneuvering target tracking with temporal convolutional networks","authors":"Lei Xia ,&nbsp;Shurui Zhang ,&nbsp;Yuhang Hu ,&nbsp;Renli Zhang ,&nbsp;Song Li ,&nbsp;Weixing Sheng","doi":"10.1016/j.sigpro.2025.110322","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional algorithms of the target tracking rely on predefined target motion states to modify sensor observations. However, these algorithms struggle to accurately and promptly model the maneuvering state of a target, thereby failing to provide precise state estimation when the target exhibits maneuvering behavior. To address this challenge, we propose a maneuvering target tracking algorithm based on temporal convolutional networks (TcnMTT). The TcnMTT model employs a constant velocity model-based unscented Kalman filter to decompose the input trajectory into high maneuver state and low maneuver state. Furthermore, the model directly maps the input observations to the true trajectory through a set of symmetric TCN networks. Additionally, TcnMTT incorporates an instance normalization module to project features into a specific feature space and combines a channel attention mechanism to extract feature correlations. Simulation results demonstrate that the proposed TcnMTT model outperforms existing methods in tracking maneuvering targets.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110322"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004384","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional algorithms of the target tracking rely on predefined target motion states to modify sensor observations. However, these algorithms struggle to accurately and promptly model the maneuvering state of a target, thereby failing to provide precise state estimation when the target exhibits maneuvering behavior. To address this challenge, we propose a maneuvering target tracking algorithm based on temporal convolutional networks (TcnMTT). The TcnMTT model employs a constant velocity model-based unscented Kalman filter to decompose the input trajectory into high maneuver state and low maneuver state. Furthermore, the model directly maps the input observations to the true trajectory through a set of symmetric TCN networks. Additionally, TcnMTT incorporates an instance normalization module to project features into a specific feature space and combines a channel attention mechanism to extract feature correlations. Simulation results demonstrate that the proposed TcnMTT model outperforms existing methods in tracking maneuvering targets.
基于深度学习的机动目标时域卷积跟踪
传统的目标跟踪算法依赖于预定义的目标运动状态来修改传感器的观测值。然而,这些算法难以准确和迅速地模拟目标的机动状态,因此无法在目标表现出机动行为时提供精确的状态估计。为了解决这一挑战,我们提出了一种基于时间卷积网络(TcnMTT)的机动目标跟踪算法。TcnMTT模型采用基于等速模型的无气味卡尔曼滤波将输入轨迹分解为高机动状态和低机动状态。此外,该模型通过一组对称的TCN网络直接将输入观测映射到真实轨迹。此外,TcnMTT结合实例规范化模块将特征投射到特定的特征空间,并结合通道关注机制提取特征相关性。仿真结果表明,所提出的TcnMTT模型在机动目标跟踪方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信