Senhao Du , Yu Huang , Qiwen Yuan , Yongliang Dai , Zhendong Shi , Menghan Hu
{"title":"Rule-augmented LLM framework for detecting unreasonableness in ICU","authors":"Senhao Du , Yu Huang , Qiwen Yuan , Yongliang Dai , Zhendong Shi , Menghan Hu","doi":"10.1016/j.displa.2025.103196","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a rule-augmented model system for detecting unreasonable activities in Intensive Care Unit (ICU) hospitalization, mainly leveraging a large language model (LLM). The system is built on DeepSeek-R1-32B and integrates existing unreasonable activities in ICU hospitalization into health insurance systems through prompt learning techniques. Compared to traditional fixed-threshold rules, the large model augmented with rules possesses the ability to identify errors and exhibits a certain degree of emergent capabilities. In addition, it provides detailed and interpretable explanations for detected unreasonableness, helping the health insurance fund supervision perform efficient and accurate reviews. The framework includes two main sub-models: a discriminator for rule judgment, and an evaluator accuracy enhancement. Training data were derived from anonymized records from multiple hospitals and pre-processed to form the first domestic dataset tailored to unreasonable ICU billing detection tasks. The experimental results validate the effectiveness and practical value of the proposed system.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103196"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002331","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a rule-augmented model system for detecting unreasonable activities in Intensive Care Unit (ICU) hospitalization, mainly leveraging a large language model (LLM). The system is built on DeepSeek-R1-32B and integrates existing unreasonable activities in ICU hospitalization into health insurance systems through prompt learning techniques. Compared to traditional fixed-threshold rules, the large model augmented with rules possesses the ability to identify errors and exhibits a certain degree of emergent capabilities. In addition, it provides detailed and interpretable explanations for detected unreasonableness, helping the health insurance fund supervision perform efficient and accurate reviews. The framework includes two main sub-models: a discriminator for rule judgment, and an evaluator accuracy enhancement. Training data were derived from anonymized records from multiple hospitals and pre-processed to form the first domestic dataset tailored to unreasonable ICU billing detection tasks. The experimental results validate the effectiveness and practical value of the proposed system.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.