CellKAN: Cellular multi-attention Kolmogorov-Arnold networks for nuclei segmentation in histopathology images

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhixian Tang , Zhentao Yang , Xucheng Cai , Zhuocheng Li , Ling Wei , Pengfei Fan , Xufeng Yao
{"title":"CellKAN: Cellular multi-attention Kolmogorov-Arnold networks for nuclei segmentation in histopathology images","authors":"Zhixian Tang ,&nbsp;Zhentao Yang ,&nbsp;Xucheng Cai ,&nbsp;Zhuocheng Li ,&nbsp;Ling Wei ,&nbsp;Pengfei Fan ,&nbsp;Xufeng Yao","doi":"10.1016/j.displa.2025.103246","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents CellKAN, a novel medical image segmentation network for nuclei detection in histopathological images. The model integrates a Multi-Scale Conv Block (MSCB), Hybrid Multi-Dimensional Attention (HMDA) mechanism, and Kolmogorov-Arnold Network Block (KAN-Block) to address challenges like missed tiny lesions, heterogeneous morphology parsing, and low-contrast boundary inaccuracies. MSCB enhances multi-scale feature extraction via hierarchical refinement, while HMDA captures cross-channel-spatial dependencies through 3D convolution and dual-path pooling. KAN-Block replaces linear weights with learnable nonlinear functions, enhancing model interpretability and reducing the number of parameters. Evaluated on MoNuSeg, PanNuke, and an In-house gastrointestinal dataset, CellKAN achieves Dice coefficients of 82.91 %, 83.50 %, and 71.38 %, outperforming state-of-the-art models (e.g., U-KAN, nnUNet) by 1.29–4.49 %. Ablation studies verify that MSCB and HMDA contribute 0.35 % and 0.48 % Dice improvements on PanNuke, respectively. The model also reduces parameters compared to nnUNet while maintaining high accuracy, balancing precision and efficiency. Visual results demonstrate its superiority in noise suppression, boundary delineation, and structural integrity, highlighting its potential for clinical pathological analysis.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103246"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002835","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents CellKAN, a novel medical image segmentation network for nuclei detection in histopathological images. The model integrates a Multi-Scale Conv Block (MSCB), Hybrid Multi-Dimensional Attention (HMDA) mechanism, and Kolmogorov-Arnold Network Block (KAN-Block) to address challenges like missed tiny lesions, heterogeneous morphology parsing, and low-contrast boundary inaccuracies. MSCB enhances multi-scale feature extraction via hierarchical refinement, while HMDA captures cross-channel-spatial dependencies through 3D convolution and dual-path pooling. KAN-Block replaces linear weights with learnable nonlinear functions, enhancing model interpretability and reducing the number of parameters. Evaluated on MoNuSeg, PanNuke, and an In-house gastrointestinal dataset, CellKAN achieves Dice coefficients of 82.91 %, 83.50 %, and 71.38 %, outperforming state-of-the-art models (e.g., U-KAN, nnUNet) by 1.29–4.49 %. Ablation studies verify that MSCB and HMDA contribute 0.35 % and 0.48 % Dice improvements on PanNuke, respectively. The model also reduces parameters compared to nnUNet while maintaining high accuracy, balancing precision and efficiency. Visual results demonstrate its superiority in noise suppression, boundary delineation, and structural integrity, highlighting its potential for clinical pathological analysis.
CellKAN:细胞多注意力Kolmogorov-Arnold网络在组织病理图像中的细胞核分割
本文提出了一种新的医学图像分割网络CellKAN,用于组织病理图像的细胞核检测。该模型集成了多尺度Conv块(MSCB)、混合多维注意(HMDA)机制和Kolmogorov-Arnold网络块(KAN-Block),以解决遗漏微小病变、异构形态解析和低对比度边界不准确等挑战。MSCB通过层次细化增强多尺度特征提取,而HMDA通过三维卷积和双路径池化捕获跨通道空间依赖关系。KAN-Block用可学习的非线性函数代替线性权值,增强了模型的可解释性,减少了参数的数量。在MoNuSeg、PanNuke和内部胃肠数据集上进行评估后,CellKAN的Dice系数分别为82.91%、83.50%和71.38%,比最先进的模型(如U-KAN、nnUNet)高出1.29 - 4.49%。消融研究证实MSCB和HMDA分别对PanNuke的Dice改善贡献了0.35%和0.48%。与nnUNet相比,该模型还减少了参数,同时保持了高精度,平衡精度和效率。视觉结果显示其在噪声抑制,边界划定和结构完整性方面的优势,突出了其临床病理分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信