Learning enriched channel interactions for image dehazing and beyond

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Abdul Hafeez Babar , Md Shamim Hossain , Weihua Tong , Naijie Gu , Zhangjin Huang
{"title":"Learning enriched channel interactions for image dehazing and beyond","authors":"Abdul Hafeez Babar ,&nbsp;Md Shamim Hossain ,&nbsp;Weihua Tong ,&nbsp;Naijie Gu ,&nbsp;Zhangjin Huang","doi":"10.1016/j.displa.2025.103212","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric haze degrades image clarity and impairs the performance of downstream computer visions tasks. Convolutional neural networks have demonstrated strong dehazing capabilities by exploiting neighborhood spatial patterns, while Vision Transformers excel at modeling long-range dependencies. However, existing methods suffers two challenges. First, inadequate modeling of inter-channel correlations leads to wavelength-dependent color distortions. Second, insufficient preservation of frequency-specific components results in blurred textures under non-uniform haze distributions. To tackle these limitations, we present the Dual-Domain Channel Attention Network (DDCA-Net), which integrates Spatial Channel Attention (SCA) and Frequency Channel Attention (FCA). The SCA module explicitly models spatial inter-channel dependencies to correct color imbalances, and the FCA module employs a multi-branch frequency decomposition mechanism to selectively restore high-frequency details attenuated by haze. This dual domain approach enables the precise reconstruction of fine-grained structures while enhancing overall image clarity. Extensive evaluations of nine benchmark datasets demonstrate consistent improvements over state-of-the-art methods. In particular, DDCA-Net achieves PSNR gains of 0.32 dB on RESIDE Indoor, 0.88 dB on SateHaze1K, and 1.79 dB on LOL-v2. Furthermore, our model yields significant boosts in downstream object detection and segmentation, confirming its practical utility. The code is available at <span><span>https://github.com/hafeezbabar/DDCA-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103212"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002495","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric haze degrades image clarity and impairs the performance of downstream computer visions tasks. Convolutional neural networks have demonstrated strong dehazing capabilities by exploiting neighborhood spatial patterns, while Vision Transformers excel at modeling long-range dependencies. However, existing methods suffers two challenges. First, inadequate modeling of inter-channel correlations leads to wavelength-dependent color distortions. Second, insufficient preservation of frequency-specific components results in blurred textures under non-uniform haze distributions. To tackle these limitations, we present the Dual-Domain Channel Attention Network (DDCA-Net), which integrates Spatial Channel Attention (SCA) and Frequency Channel Attention (FCA). The SCA module explicitly models spatial inter-channel dependencies to correct color imbalances, and the FCA module employs a multi-branch frequency decomposition mechanism to selectively restore high-frequency details attenuated by haze. This dual domain approach enables the precise reconstruction of fine-grained structures while enhancing overall image clarity. Extensive evaluations of nine benchmark datasets demonstrate consistent improvements over state-of-the-art methods. In particular, DDCA-Net achieves PSNR gains of 0.32 dB on RESIDE Indoor, 0.88 dB on SateHaze1K, and 1.79 dB on LOL-v2. Furthermore, our model yields significant boosts in downstream object detection and segmentation, confirming its practical utility. The code is available at https://github.com/hafeezbabar/DDCA-Net.
学习丰富的通道交互图像去雾和超越
大气雾霾降低了图像清晰度,并损害了下游计算机视觉任务的性能。卷积神经网络通过利用邻域空间模式展示了强大的去雾能力,而视觉变形器擅长建模远程依赖关系。然而,现有的方法面临两个挑战。首先,通道间相关性建模不足导致波长相关的颜色失真。其次,在非均匀雾霾分布下,频率特异性成分保存不足导致纹理模糊。为了解决这些限制,我们提出了双域信道注意网络(DDCA-Net),它集成了空间信道注意(SCA)和频率信道注意(FCA)。SCA模块明确地模拟空间通道间依赖关系以纠正色彩失衡,FCA模块采用多分支频率分解机制来选择性地恢复被雾霾衰减的高频细节。这种双域方法能够精确重建细粒度结构,同时增强整体图像清晰度。对九个基准数据集的广泛评估表明,与最先进的方法相比,改进是一致的。特别是,DDCA-Net在residential Indoor、SateHaze1K和LOL-v2上的PSNR增益分别为0.32 dB、0.88 dB和1.79 dB。此外,我们的模型在下游目标检测和分割方面产生了显著的提升,证实了它的实用性。代码可在https://github.com/hafeezbabar/DDCA-Net上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信