Capturing fluctuations in multivariate intensive longitudinal data

Q2 Psychology
Katerina M. Marcoulides, Hannah Hamling
{"title":"Capturing fluctuations in multivariate intensive longitudinal data","authors":"Katerina M. Marcoulides,&nbsp;Hannah Hamling","doi":"10.1016/j.metip.2025.100211","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel method for intensive longitudinal data incorporating dimension reduction and time series analyses. The method capitalizes on the notion of determining distance or similarity parameters in the data. The method is a three-phase approach where, 1) distance parameters are determined for each individual, 2) optimal distances between the variables are computed across all participant and time points, and 3) a one-dimensional solution is computed across all time-points for each participant. A first-order autoregressive model was fit to each individual's solution vector to examine intra-individual dynamics and allow for comparisons of inter-individual trajectories. The method constructs a one-dimensional representation at each time-point while preserving the structure of the relationships between variables.</div></div>","PeriodicalId":93338,"journal":{"name":"Methods in Psychology (Online)","volume":"13 ","pages":"Article 100211"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Psychology (Online)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590260125000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel method for intensive longitudinal data incorporating dimension reduction and time series analyses. The method capitalizes on the notion of determining distance or similarity parameters in the data. The method is a three-phase approach where, 1) distance parameters are determined for each individual, 2) optimal distances between the variables are computed across all participant and time points, and 3) a one-dimensional solution is computed across all time-points for each participant. A first-order autoregressive model was fit to each individual's solution vector to examine intra-individual dynamics and allow for comparisons of inter-individual trajectories. The method constructs a one-dimensional representation at each time-point while preserving the structure of the relationships between variables.
捕获多变量密集纵向数据的波动
本文介绍了一种结合降维和时间序列分析的深度纵向数据处理新方法。该方法利用确定数据中的距离或相似性参数的概念。该方法是一个三相方法,其中1)为每个个体确定距离参数,2)在所有参与者和时间点计算变量之间的最佳距离,3)在每个参与者的所有时间点计算一维解。一阶自回归模型适合于每个个体的解向量,以检查个体内部动态,并允许比较个体之间的轨迹。该方法在每个时间点构建一维表示,同时保留变量之间关系的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in Psychology (Online)
Methods in Psychology (Online) Experimental and Cognitive Psychology, Clinical Psychology, Developmental and Educational Psychology
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信