{"title":"Tailoring binary decision diagram compilation for feature models","authors":"Clemens Dubslaff , Nils Husung , Nikolai Käfer","doi":"10.1016/j.jss.2025.112566","DOIUrl":null,"url":null,"abstract":"<div><div>The compilation of feature models into <em>binary decision diagrams (BDDs)</em> is a major challenge in the area of configurable systems analysis. For many large-scale feature models such as the variants of the prominent Linux product line, BDDs could not yet be obtained due to exceeding state-of-the-art compilation capabilities. Until now, BDD compilation has been mainly considered on standard settings of existing BDD tools, barely exploiting advanced techniques or tuning parameters.</div><div>In this article, we conduct a comprehensive study on how to configure various techniques from the literature and thus improve compilation performance for feature models given in conjunctive normal form. Specifically, we evaluate preprocessing for <em>satisfiability solving (SAT)</em>, variable and clause ordering heuristics, as well as non-standard and multi-threaded BDD construction schemes. Our experiments on recent feature models demonstrate that BDD compilation of feature models greatly benefits from these techniques. We show that our methods enable BDD compilations of many large-scale feature models within seconds, including the whole <span>eCos</span> feature model collection for which a compilation was previously infeasible.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"231 ","pages":"Article 112566"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225002353","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The compilation of feature models into binary decision diagrams (BDDs) is a major challenge in the area of configurable systems analysis. For many large-scale feature models such as the variants of the prominent Linux product line, BDDs could not yet be obtained due to exceeding state-of-the-art compilation capabilities. Until now, BDD compilation has been mainly considered on standard settings of existing BDD tools, barely exploiting advanced techniques or tuning parameters.
In this article, we conduct a comprehensive study on how to configure various techniques from the literature and thus improve compilation performance for feature models given in conjunctive normal form. Specifically, we evaluate preprocessing for satisfiability solving (SAT), variable and clause ordering heuristics, as well as non-standard and multi-threaded BDD construction schemes. Our experiments on recent feature models demonstrate that BDD compilation of feature models greatly benefits from these techniques. We show that our methods enable BDD compilations of many large-scale feature models within seconds, including the whole eCos feature model collection for which a compilation was previously infeasible.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.