{"title":"MNT-TNN: spatiotemporal traffic data imputation via compact multimode nonlinear transform-based tensor nuclear norm","authors":"Yihang Lu , Mahwish Yousaf , Xianwei Meng , Enhong Chen","doi":"10.1016/j.trc.2025.105348","DOIUrl":null,"url":null,"abstract":"<div><div>Imputation of random or non-random missing data is a long-standing research topic and a crucial application for Intelligent Transportation Systems (ITS). However, with the advent of modern communication technologies such as Global Satellite Navigation Systems (GNSS), traffic data collection has introduced new challenges in random missing value imputation and increasing demands for spatiotemporal dependency modelings. To address these issues, we propose a novel spatiotemporal traffic imputation method based on a Multimode Nonlinear Transformed Tensor Nuclear Norm (MNT-TNN), which can effectively capture the intrinsic multimode spatiotemporal correlations and low-rankness of the traffic tensor, represented as location <span><math><mo>×</mo></math></span> location <span><math><mo>×</mo></math></span> time. To solve the nonconvex optimization problem, we design a proximal alternating minimization (PAM) algorithm with theoretical convergence guarantees. We also suggest an Augmented Transform-based Tensor Nuclear Norm Families (ATTNNs) framework to enhance the imputation results of TTNN techniques, especially at very high miss rates. Extensive experiments on real datasets demonstrate that our proposed MNT-TNN and ATTNNs can outperform the compared state-of-the-art imputation methods, completing the benchmark of random missing traffic value imputation.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"180 ","pages":"Article 105348"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25003523","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Imputation of random or non-random missing data is a long-standing research topic and a crucial application for Intelligent Transportation Systems (ITS). However, with the advent of modern communication technologies such as Global Satellite Navigation Systems (GNSS), traffic data collection has introduced new challenges in random missing value imputation and increasing demands for spatiotemporal dependency modelings. To address these issues, we propose a novel spatiotemporal traffic imputation method based on a Multimode Nonlinear Transformed Tensor Nuclear Norm (MNT-TNN), which can effectively capture the intrinsic multimode spatiotemporal correlations and low-rankness of the traffic tensor, represented as location location time. To solve the nonconvex optimization problem, we design a proximal alternating minimization (PAM) algorithm with theoretical convergence guarantees. We also suggest an Augmented Transform-based Tensor Nuclear Norm Families (ATTNNs) framework to enhance the imputation results of TTNN techniques, especially at very high miss rates. Extensive experiments on real datasets demonstrate that our proposed MNT-TNN and ATTNNs can outperform the compared state-of-the-art imputation methods, completing the benchmark of random missing traffic value imputation.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.