DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuhan Guo , Qin Zhang , Xiaolong Fu , Guimei Zheng , Hao Zhou
{"title":"DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network","authors":"Shuhan Guo ,&nbsp;Qin Zhang ,&nbsp;Xiaolong Fu ,&nbsp;Guimei Zheng ,&nbsp;Hao Zhou","doi":"10.1016/j.dsp.2025.105627","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105627"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425006499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation.
基于深度卷积自编码器和深度卷积神经网络的稀疏阵列DOA估计方法
提出了一种基于深度卷积自编码器(DCAE)的到达方向估计方法。该方法构造一个DCAE,将稀疏阵列接收信号的协方差矩阵映射到特征空间,再重构成均匀线性阵列接收信号的协方差矩阵。随后,结合MUSIC算法进行DOA估计,有效地增加了稀疏阵列的自由度,较好地解决了稀疏阵列欠定条件下的DOA估计问题。针对传统稀疏阵列DOA估计算法估计精度低、角度分辨率差的问题,提出了一种基于深度卷积神经网络(DCNN)的DOA估计方法。该方法提取稀疏阵列物理元素接收信号的协方差矩阵到到达角的映射,实现更高精度和更高分辨率的DOA估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信