{"title":"Predicting maternal health risk using PCA-enhanced XGBoost and SMOTE-ENN for improved healthcare outcomes","authors":"Rahmatul Kabir Rasel Sarker , Sadman Hafij , Md Adib Yasir , Md Assaduzzaman , Md Monir Hossain Shimul , Md Kamrul Hossain","doi":"10.1016/j.ibmed.2025.100300","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Maternal health remains a global priority, especially in low-resource settings where timely risk identification is critical. Traditional machine learning models often suffer from poor generalizability, data imbalance, and computational inefficiencies. This study proposes an enhanced predictive model combining SMOTE-ENN data balancing and Principal Component Analysis (PCA) with XGBoost to improve maternal risk classification accuracy using minimal, easily collectible clinical features.</div></div><div><h3>Methods</h3><div>The dataset of 1014 maternal health records comprising seven physiological features was sourced from a public repository. Preprocessing involved standardization, label encoding, and class balancing using SMOTE-ENN. PCA was applied for dimensionality reduction to enhance computational performance and reduce overfitting. Several machine learning classifiers including Decision Tree, Random Forest, LightGBM, Gradient Boosting, and SVM were evaluated, with XGBoost selected as the final model. Performance metrics included accuracy, precision, recall, F1-score, ROC-AUC, and 10-fold cross-validation.</div></div><div><h3>Results</h3><div>The PCA-enhanced XGBoost model achieved the highest accuracy (97.73 %), precision (98 %), recall (98 %), and F1-score (98 %). It outperformed all other models, particularly in identifying high-risk cases with minimal false negatives. Cross-validation confirmed the model's robustness (mean accuracy: 98.39 %), and ROC-AUC scores exceeded 0.998 for all classes, indicating near-perfect classification performance.</div></div><div><h3>Conclusion</h3><div>This study validates a maternal health risk prediction model that is scalable for use in resource-constrained environments and interpretable within the limitations of the selected dimensionality-reduction approach. Its simplicity, high accuracy, and generalizability make it a promising tool for early clinical decision-making and intervention.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100300"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225001048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Maternal health remains a global priority, especially in low-resource settings where timely risk identification is critical. Traditional machine learning models often suffer from poor generalizability, data imbalance, and computational inefficiencies. This study proposes an enhanced predictive model combining SMOTE-ENN data balancing and Principal Component Analysis (PCA) with XGBoost to improve maternal risk classification accuracy using minimal, easily collectible clinical features.
Methods
The dataset of 1014 maternal health records comprising seven physiological features was sourced from a public repository. Preprocessing involved standardization, label encoding, and class balancing using SMOTE-ENN. PCA was applied for dimensionality reduction to enhance computational performance and reduce overfitting. Several machine learning classifiers including Decision Tree, Random Forest, LightGBM, Gradient Boosting, and SVM were evaluated, with XGBoost selected as the final model. Performance metrics included accuracy, precision, recall, F1-score, ROC-AUC, and 10-fold cross-validation.
Results
The PCA-enhanced XGBoost model achieved the highest accuracy (97.73 %), precision (98 %), recall (98 %), and F1-score (98 %). It outperformed all other models, particularly in identifying high-risk cases with minimal false negatives. Cross-validation confirmed the model's robustness (mean accuracy: 98.39 %), and ROC-AUC scores exceeded 0.998 for all classes, indicating near-perfect classification performance.
Conclusion
This study validates a maternal health risk prediction model that is scalable for use in resource-constrained environments and interpretable within the limitations of the selected dimensionality-reduction approach. Its simplicity, high accuracy, and generalizability make it a promising tool for early clinical decision-making and intervention.