Suppression mechanism of vortex-induced vibrations using non-linear energy sink with inerter based mechanical networks

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
K.Devarajan , Fenq Qian , Lei Zuo
{"title":"Suppression mechanism of vortex-induced vibrations using non-linear energy sink with inerter based mechanical networks","authors":"K.Devarajan ,&nbsp;Fenq Qian ,&nbsp;Lei Zuo","doi":"10.1016/j.chaos.2025.117246","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a detailed analytical and numerical investigation into the suppression of vortex-induced vibrations (VIV) in circular cylinders using an inerter-based nonlinear energy sink (INES). The INES system, developed by integrating inerter-based mechanical networks into a conventional nonlinear energy sink, is evaluated for its ability to mitigate high-amplitude oscillations in circular cylinder resulting from fluid–structure interactions. The coupled dynamics are modeled using a Van der Pol oscillator to represent wake effects, along with a primary structure subjected to cross-flow excitation. Analytical techniques like the Complexification-Averaging (CX-A) method are used to derive the slow-flow equations and develop the Slow Invariant Manifold (SIM). This approach helps reveal strongly modulated responses (SMRs) and provides insight into the underlying energy transfer processes. Results reveal that the INES facilitates targeted energy transfer (TET), efficiently reducing structural vibrations compared to conventional NES systems. Parametric studies identify optimal ranges for mass ratio, non-dimensional stiffness and damping ratio, and inertance values for effective VIV control. The findings underscore the potential of INES as a passive yet highly effective vibration control strategy for fluid-excited structures.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117246"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012597","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a detailed analytical and numerical investigation into the suppression of vortex-induced vibrations (VIV) in circular cylinders using an inerter-based nonlinear energy sink (INES). The INES system, developed by integrating inerter-based mechanical networks into a conventional nonlinear energy sink, is evaluated for its ability to mitigate high-amplitude oscillations in circular cylinder resulting from fluid–structure interactions. The coupled dynamics are modeled using a Van der Pol oscillator to represent wake effects, along with a primary structure subjected to cross-flow excitation. Analytical techniques like the Complexification-Averaging (CX-A) method are used to derive the slow-flow equations and develop the Slow Invariant Manifold (SIM). This approach helps reveal strongly modulated responses (SMRs) and provides insight into the underlying energy transfer processes. Results reveal that the INES facilitates targeted energy transfer (TET), efficiently reducing structural vibrations compared to conventional NES systems. Parametric studies identify optimal ranges for mass ratio, non-dimensional stiffness and damping ratio, and inertance values for effective VIV control. The findings underscore the potential of INES as a passive yet highly effective vibration control strategy for fluid-excited structures.
基于惯性网络的非线性能量阱抑制涡激振动的机理
本文对利用基于干涉的非线性能量汇(INES)抑制圆柱涡激振动(VIV)进行了详细的分析和数值研究。INES系统通过将基于相互作用的机械网络集成到传统的非线性能量汇中而开发,其缓解由流固相互作用引起的圆柱体中高振幅振荡的能力得到了评估。耦合动力学是用范德波振荡器来表示尾迹效应,以及受交叉流激励的初级结构。分析技术,如复化平均(CX-A)方法被用来推导慢流方程和发展慢不变流形(SIM)。这种方法有助于揭示强调制响应(smr),并深入了解潜在的能量转移过程。结果表明,与传统的NES系统相比,INES促进了目标能量传递(TET),有效地减少了结构振动。参数化研究确定了质量比、无量纲刚度和阻尼比以及有效涡激振动控制的惯性值的最佳范围。这些发现强调了INES作为一种被动但高效的流体激励结构振动控制策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信