Analysis of persistent and antipersistent time series with the Visibility Graph method

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Macarena Cádiz, Iván Gallo-Méndez, Pablo S. Moya, Denisse Pastén
{"title":"Analysis of persistent and antipersistent time series with the Visibility Graph method","authors":"Macarena Cádiz,&nbsp;Iván Gallo-Méndez,&nbsp;Pablo S. Moya,&nbsp;Denisse Pastén","doi":"10.1016/j.chaos.2025.117280","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate a range of time series, including Gaussian noises (white, pink, and blue), stochastic processes (Ornstein–Uhlenbeck, fractional Brownian motion, and Lévy flights), and chaotic systems (the logistic map), using the Visibility Graph (VG) method. We focus on the minimum number of data to use VG and on two key descriptors: the degree distribution <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>, which often follows a power-law <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span>, and the Hurst exponent <span><math><mi>H</mi></math></span>, which identifies persistent and antipersistent time series. While the VG method has attracted growing attention in recent years, its ability to consistently characterize time series from diverse dynamical systems remains unclear. Our analysis shows that the reliable application of the VG method requires a minimum of 1000 data points. Furthermore, we find that for time series with a Hurst exponent <span><math><mrow><mi>H</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, the corresponding critical exponent satisfies <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. These results clarify the sensitivity of the VG method and provide practical guidelines for its application in the analysis of stochastic and chaotic time series.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117280"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012937","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate a range of time series, including Gaussian noises (white, pink, and blue), stochastic processes (Ornstein–Uhlenbeck, fractional Brownian motion, and Lévy flights), and chaotic systems (the logistic map), using the Visibility Graph (VG) method. We focus on the minimum number of data to use VG and on two key descriptors: the degree distribution P(k), which often follows a power-law P(k)kγ, and the Hurst exponent H, which identifies persistent and antipersistent time series. While the VG method has attracted growing attention in recent years, its ability to consistently characterize time series from diverse dynamical systems remains unclear. Our analysis shows that the reliable application of the VG method requires a minimum of 1000 data points. Furthermore, we find that for time series with a Hurst exponent H0.5, the corresponding critical exponent satisfies γ2. These results clarify the sensitivity of the VG method and provide practical guidelines for its application in the analysis of stochastic and chaotic time series.

Abstract Image

持久性和非持久性时间序列的可见性图分析
在这项工作中,我们研究了一系列时间序列,包括高斯噪声(白色,粉红色和蓝色),随机过程(Ornstein-Uhlenbeck,分数布朗运动和l飞行)和混沌系统(逻辑图),使用可见性图(VG)方法。我们专注于使用VG的最小数据数和两个关键描述符:度分布P(k),它通常遵循幂律P(k) ~ k−γ,以及Hurst指数H,它识别持久和反持久时间序列。虽然VG方法近年来引起了越来越多的关注,但其在不同动力系统中一致表征时间序列的能力尚不清楚。我们的分析表明,VG方法的可靠应用至少需要1000个数据点。进一步,我们发现对于Hurst指数H≤0.5的时间序列,其对应的临界指数满足γ≥2。这些结果阐明了VG方法的敏感性,并为其在随机和混沌时间序列分析中的应用提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信