Yuansheng Ma , Ziyang Zhang , Jiangyong He , Pan Wang , Hao Zhang , Zhi Wang , Yange Liu , Bo Liu
{"title":"Complex self-organization of mutated soliton supramolecular structures in a passively mode-locked fiber laser","authors":"Yuansheng Ma , Ziyang Zhang , Jiangyong He , Pan Wang , Hao Zhang , Zhi Wang , Yange Liu , Bo Liu","doi":"10.1016/j.chaos.2025.117311","DOIUrl":null,"url":null,"abstract":"<div><div>Soliton supramolecular structures, as extended entities in the temporal domain, provide a fascinating platform for investigating the nonlinear interactions between solitons. We observed the mutated soliton supramolecular structures in a passively mode-locked fiber laser. Due to the intracavity gain fluctuations and noise perturbations, the distributions of soliton molecules exhibit locally ordered or disordered patterns, yet globally random. Our findings suggest that the generation and annihilation of new solitons or soliton molecules are the primary factors driving the formation of such mutated distributions. These disorders within locally distributions further promote the coexistence of diverse dynamical processes, such as the bound–escape relative motion between the single soliton and soliton molecule, transitions from asynchronous to synchronous states across neighboring systems, and state switching of soliton complexes. Numerical simulations support the formation and evolution mechanisms of these distributions and dynamics within the passive mode-locked dissipative cavity. This research provides new insights into the nonlinear dynamics of mode-locked lasers and has the potential to inspire future applications in nonlinear optical control.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117311"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013244","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Soliton supramolecular structures, as extended entities in the temporal domain, provide a fascinating platform for investigating the nonlinear interactions between solitons. We observed the mutated soliton supramolecular structures in a passively mode-locked fiber laser. Due to the intracavity gain fluctuations and noise perturbations, the distributions of soliton molecules exhibit locally ordered or disordered patterns, yet globally random. Our findings suggest that the generation and annihilation of new solitons or soliton molecules are the primary factors driving the formation of such mutated distributions. These disorders within locally distributions further promote the coexistence of diverse dynamical processes, such as the bound–escape relative motion between the single soliton and soliton molecule, transitions from asynchronous to synchronous states across neighboring systems, and state switching of soliton complexes. Numerical simulations support the formation and evolution mechanisms of these distributions and dynamics within the passive mode-locked dissipative cavity. This research provides new insights into the nonlinear dynamics of mode-locked lasers and has the potential to inspire future applications in nonlinear optical control.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.