A linear stability investigation of non-Darcian MHD flow in a vertical pipe via numerical methods

IF 2.5 3区 工程技术 Q2 MECHANICS
Ashok Kumar , Anup Singh Negi , Ashok Kumar
{"title":"A linear stability investigation of non-Darcian MHD flow in a vertical pipe via numerical methods","authors":"Ashok Kumar ,&nbsp;Anup Singh Negi ,&nbsp;Ashok Kumar","doi":"10.1016/j.euromechflu.2025.204379","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the linear stability of buoyancy-assisted Poiseuille flow of an electrically conducting fluid through a vertical porous pipe subjected to a transverse magnetic field. The flow behavior is modeled using the Brinkman-extended non-Darcy formulation to capture the influence of both viscous and inertial effects in a porous medium. A linear stability analysis is performed, and the consequential eigenvalue problem is solved numerically using the Chebyshev spectral collocation method. The impact of key dimensionless parameters, including the Prandtl number (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></math></span> to 100), Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span>), and Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>), are systematically examined to understand their roles in flow stability. The results reveal that the base velocity profile exhibits an inflection point, and the applied magnetic field significantly alters both velocity and temperature distributions. For water (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span>), the flow exhibits least stability at higher magnetic influence (<span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>2</mn></mrow></math></span>), indicating the potential for enhanced heat transfer, particle dispersion, and flow manipulation. Conversely, for heavy oil (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>50</mn></mrow></math></span>), the flow is least stable without a magnetic field (<span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span>), highlighting magnetic field-based control strategies for applications such as thermal management, flow control, and smart fluidic devices. These findings offer important insights for optimizing magnetohydrodynamic flows in porous systems for engineering and industrial applications.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"115 ","pages":"Article 204379"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625001608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the linear stability of buoyancy-assisted Poiseuille flow of an electrically conducting fluid through a vertical porous pipe subjected to a transverse magnetic field. The flow behavior is modeled using the Brinkman-extended non-Darcy formulation to capture the influence of both viscous and inertial effects in a porous medium. A linear stability analysis is performed, and the consequential eigenvalue problem is solved numerically using the Chebyshev spectral collocation method. The impact of key dimensionless parameters, including the Prandtl number (Pr=0.01 to 100), Darcy number (Da=101 to 104), and Hartmann number (Ha), are systematically examined to understand their roles in flow stability. The results reveal that the base velocity profile exhibits an inflection point, and the applied magnetic field significantly alters both velocity and temperature distributions. For water (Pr=7), the flow exhibits least stability at higher magnetic influence (Ha=2), indicating the potential for enhanced heat transfer, particle dispersion, and flow manipulation. Conversely, for heavy oil (Pr=50), the flow is least stable without a magnetic field (Ha=0), highlighting magnetic field-based control strategies for applications such as thermal management, flow control, and smart fluidic devices. These findings offer important insights for optimizing magnetohydrodynamic flows in porous systems for engineering and industrial applications.
用数值方法研究垂直管内非达西MHD流动的线性稳定性
本文研究了在横向磁场作用下,导电流体在浮力辅助下流过垂直多孔管道的泊泽维尔流的线性稳定性。流动行为使用布林克曼扩展的非达西公式来模拟,以捕捉多孔介质中粘性和惯性效应的影响。进行了线性稳定性分析,并采用切比雪夫谱配置法对相应的特征值问题进行了数值求解。关键的无量纲参数的影响,包括普朗特数(Pr=0.01至100),达西数(Da=10−1至10−4),和哈特曼数(Ha),系统地检查,以了解他们在流动稳定性中的作用。结果表明,基底速度分布存在拐点,外加磁场对速度和温度分布均有显著影响。对于水(Pr=7),在较高的磁影响下(Ha=2),流动表现出最低的稳定性,这表明可能会增强传热、颗粒分散和流动操纵。相反,对于稠油(Pr=50),在没有磁场(Ha=0)的情况下,流动最不稳定,这突出了基于磁场的控制策略在热管理、流量控制和智能流体装置等应用中的应用。这些发现为优化工程和工业应用中多孔系统中的磁流体动力学流动提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信