Turbulent burning velocity of lean premixed hydrogen/air flames at engine conditions: Effects of turbulence intensity and length scale

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS
Yiqing Wang, Chao Xu, Riccardo Scarcelli
{"title":"Turbulent burning velocity of lean premixed hydrogen/air flames at engine conditions: Effects of turbulence intensity and length scale","authors":"Yiqing Wang,&nbsp;Chao Xu,&nbsp;Riccardo Scarcelli","doi":"10.1016/j.combustflame.2025.114504","DOIUrl":null,"url":null,"abstract":"<div><div>For turbulent lean premixed hydrogen flames with strong thermodiffusively instabilities, most previous studies have focused on the influence of turbulence intensity, whereas the role of turbulence length scale is less well understood. This study addresses this gap by conducting direct numerical simulations (DNS) of statistically planar turbulent premixed flames for a lean (<span><math><mi>ϕ</mi></math></span>=0.35) hydrogen/air mixture under independently varied turbulence intensity (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>) and length scale (<span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>) at engine-relevant thermodynamics conditions. Results show that as <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> increases, the flame front becomes increasingly wrinkled, forming smaller cellular structures. In contrast, <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> variations do not significantly alter the size of these structures. For the turbulent burning velocity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>), the normalized <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> (i.e., <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> is the laminar flame speed) increases linearly with <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, driven by both enhanced flame surface wrinkling (i.e., increased <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>) and enhanced local burning rate (i.e., increased <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). However, increasing <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> reduces <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, despite a continued increase in <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, resulting in only a marginal increase in <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>. To reveal the underlying mechanisms, especially the decreasing trend of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, local flame dynamics analyses are performed. It is found that as <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> increases, the interaction between thermodiffusive effects and turbulence weakens due to the reduced tangential strain rate, while the flame curvature remains largely unchanged. This suppresses local reactivity enhancement and thus decreases <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, In contrast, an increase in <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> enhances the interaction by amplifying both curvature fluctuation and tangential strain rate, leading to increased local reactivity (increased <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). Finally, based on the DNS data, new scaling models are proposed for the three global properties, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and show improvements compared to existing models. These findings provide new insights into the flame-turbulence interactions in thermodiffusively unstable hydrogen flames. The DNS dataset is also useful for the development of turbulent combustion models applicable to practical engine simulations.</div><div><strong>Novelty and Significance Statement</strong> Despite extensive research on the effects of turbulence intensity on the turbulent burning velocity of lean premixed hydrogen flames, the influence of turbulence length scale remains largely unexplored. To the authors’ knowledge, this study is the first to perform a series of 3-D Direct Numerical Simulations of lean premixed hydrogen flames with independently and systematically varied turbulence intensity and length scale at engine-relevant conditions. The analysis of flame morphology, global flame properties, and local flame dynamics provides novel insights into the influence of turbulence length scale on thermodiffusive effects. In addition, new empirical scaling models are proposed for the turbulent burning velocity and its contributors. These findings and the new DNS data set can also benefit the modeling community for model development and validation. Therefore, this study is of critical importance in both fundamental research and practical applications for hydrogen engines.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"282 ","pages":"Article 114504"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025005413","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

For turbulent lean premixed hydrogen flames with strong thermodiffusively instabilities, most previous studies have focused on the influence of turbulence intensity, whereas the role of turbulence length scale is less well understood. This study addresses this gap by conducting direct numerical simulations (DNS) of statistically planar turbulent premixed flames for a lean (ϕ=0.35) hydrogen/air mixture under independently varied turbulence intensity (u) and length scale (lT) at engine-relevant thermodynamics conditions. Results show that as u increases, the flame front becomes increasingly wrinkled, forming smaller cellular structures. In contrast, lT variations do not significantly alter the size of these structures. For the turbulent burning velocity (ST), the normalized ST (i.e., ST/SL, where SL is the laminar flame speed) increases linearly with u, driven by both enhanced flame surface wrinkling (i.e., increased AT/AL) and enhanced local burning rate (i.e., increased I0). However, increasing lT reduces I0, despite a continued increase in AT/AL, resulting in only a marginal increase in ST/SL. To reveal the underlying mechanisms, especially the decreasing trend of I0 with lT, local flame dynamics analyses are performed. It is found that as lT increases, the interaction between thermodiffusive effects and turbulence weakens due to the reduced tangential strain rate, while the flame curvature remains largely unchanged. This suppresses local reactivity enhancement and thus decreases I0, In contrast, an increase in u enhances the interaction by amplifying both curvature fluctuation and tangential strain rate, leading to increased local reactivity (increased I0). Finally, based on the DNS data, new scaling models are proposed for the three global properties, ST/SL, AT/AL, and I0, and show improvements compared to existing models. These findings provide new insights into the flame-turbulence interactions in thermodiffusively unstable hydrogen flames. The DNS dataset is also useful for the development of turbulent combustion models applicable to practical engine simulations.
Novelty and Significance Statement Despite extensive research on the effects of turbulence intensity on the turbulent burning velocity of lean premixed hydrogen flames, the influence of turbulence length scale remains largely unexplored. To the authors’ knowledge, this study is the first to perform a series of 3-D Direct Numerical Simulations of lean premixed hydrogen flames with independently and systematically varied turbulence intensity and length scale at engine-relevant conditions. The analysis of flame morphology, global flame properties, and local flame dynamics provides novel insights into the influence of turbulence length scale on thermodiffusive effects. In addition, new empirical scaling models are proposed for the turbulent burning velocity and its contributors. These findings and the new DNS data set can also benefit the modeling community for model development and validation. Therefore, this study is of critical importance in both fundamental research and practical applications for hydrogen engines.
发动机条件下稀氢/空气预混火焰的湍流燃烧速度:湍流强度和长度尺度的影响
对于具有较强热扩散不稳定性的湍流稀薄预混氢火焰,以往的研究大多集中在湍流强度的影响上,而湍流长度尺度的作用却知之甚少。本研究通过在发动机相关热力学条件下,在独立变化的湍流强度(u ')和长度尺度(lT)下,对稀薄(φ =0.35)氢/空气混合物进行统计平面湍流预混火焰的直接数值模拟(DNS)来解决这一差距。结果表明:随着u′的增大,火焰前缘皱褶增大,形成较小的胞状结构;相反,温度变化不会显著改变这些结构的大小。对于湍流燃烧速度(ST),归一化后的ST(即ST/SL,其中SL为层流火焰速度)随u′线性增加,这是由火焰表面起皱增强(即AT/AL增加)和局部燃烧速度增强(即I0增加)共同驱动的。然而,尽管AT/AL持续增加,但lT的增加降低了I0,仅导致ST/SL的边际增加。为了揭示其潜在的机理,特别是I0随lT降低的趋势,进行了局部火焰动力学分析。结果表明,随着温度的增加,热扩散效应与湍流之间的相互作用减弱,切向应变速率降低,而火焰曲率基本保持不变。这抑制了局部反应性的增强,从而降低了I0。相反,u '的增加通过放大曲率波动和切向应变率来增强相互作用,从而导致局部反应性增加(I0增加)。最后,基于DNS数据,提出了ST/SL、AT/AL和I0三个全局属性的标度模型,并对现有模型进行了改进。这些发现为热扩散不稳定氢火焰中的火焰-湍流相互作用提供了新的见解。DNS数据集对于开发适用于实际发动机模拟的湍流燃烧模型也很有用。尽管对湍流强度对稀预混氢火焰湍流燃烧速度的影响进行了广泛的研究,但湍流长度尺度的影响在很大程度上仍未被探索。据作者所知,本研究首次对发动机相关条件下具有独立和系统变化湍流强度和长度尺度的贫预混氢火焰进行了一系列三维直接数值模拟。对火焰形态、全局火焰特性和局部火焰动力学的分析为湍流长度尺度对热扩散效应的影响提供了新的见解。此外,提出了紊流燃烧速度及其影响因素的新的经验标度模型。这些发现和新的DNS数据集也有利于建模社区进行模型开发和验证。因此,该研究对氢发动机的基础研究和实际应用都具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信