Clothilde Minnaert , Samuel Angiboust , Clément Herviou , Raphael Melis , Johannes Glodny , Aitor Cambeses , Tom Raimondo , Justin Payne , Thomas Rigaudier , Juan Cárdenas-Párraga , Clémentine Fellah , Véronique Gardien , Patrick Jame , Erik Bonjour , Antonio Garcia-Casco
{"title":"Tracking fluid sources in mantle wedge jadeitites: Petro-geochemical constraints and implications for fluid venting above the subduction interface","authors":"Clothilde Minnaert , Samuel Angiboust , Clément Herviou , Raphael Melis , Johannes Glodny , Aitor Cambeses , Tom Raimondo , Justin Payne , Thomas Rigaudier , Juan Cárdenas-Párraga , Clémentine Fellah , Véronique Gardien , Patrick Jame , Erik Bonjour , Antonio Garcia-Casco","doi":"10.1016/j.chemgeo.2025.123046","DOIUrl":null,"url":null,"abstract":"<div><div>Jadeitites are commonly found in serpentinite mélanges and form by fluid flow across the subduction interface. Petrological analysis of jadeitites from various localities (Myanmar, Guatemala, Cuba, Russia, and Iran) coupled with structural characterization enabled the identification of successive jadeite/omphacite generations with subordinate amphibole and mica. These parageneses reflect metasomatism coeval with brittle and/or ductile deformation and complex crosscutting relationships. The composition of fluid inclusions (salinity, gas, δ<sup>18</sup>O, δD) reveals a wide range of fluid species pointing to a diversity of jadeitite-forming metasomatism. In situ trace element analysis and isotopic measurements (δ<sup>11</sup>B, <sup>87</sup>Sr/<sup>86</sup>Sr, δ<sup>18</sup>O) indicate a fluid source dominated by altered oceanic crust (AOC) with a minor sedimentary component. Despite marked changes in major element content during protracted metasomatism, trace elements evolve only moderately while isotopes are virtually homogeneous, recording only small variations of fluid composition over time. Jadeitite evolution is strongly related to the ongoing serpentinization of the mantle wedge, promoting a longer fluid time-residence at the interface associated with chemical exchange and pore-pressure build-up. This suggests that (i) First jadeite generations formed by percolation of highly channelized AOC-derived-fluids in a dry mantle wedge, while later generations record fluid interaction with sediments and the serpentinized mantle. (ii) Fluid pulses across the subduction interface and rheological behavior of the near interface mantle wedge are not controlled by drastic changes in the nature of the slab input, but rather by the cooling of the serpentinizing subduction environment. (iii) The re-use of the same fluid pathways above the slab promotes the re-equilibration of isotopic signatures. (iv) Overpressures may build up upon jadeitite formation and promote brittle deformation events. This may lead to switches in deformation style and variations in permeability, thus changing fluid flow mode along the base of the mantle wedge.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"695 ","pages":"Article 123046"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000925412500436X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Jadeitites are commonly found in serpentinite mélanges and form by fluid flow across the subduction interface. Petrological analysis of jadeitites from various localities (Myanmar, Guatemala, Cuba, Russia, and Iran) coupled with structural characterization enabled the identification of successive jadeite/omphacite generations with subordinate amphibole and mica. These parageneses reflect metasomatism coeval with brittle and/or ductile deformation and complex crosscutting relationships. The composition of fluid inclusions (salinity, gas, δ18O, δD) reveals a wide range of fluid species pointing to a diversity of jadeitite-forming metasomatism. In situ trace element analysis and isotopic measurements (δ11B, 87Sr/86Sr, δ18O) indicate a fluid source dominated by altered oceanic crust (AOC) with a minor sedimentary component. Despite marked changes in major element content during protracted metasomatism, trace elements evolve only moderately while isotopes are virtually homogeneous, recording only small variations of fluid composition over time. Jadeitite evolution is strongly related to the ongoing serpentinization of the mantle wedge, promoting a longer fluid time-residence at the interface associated with chemical exchange and pore-pressure build-up. This suggests that (i) First jadeite generations formed by percolation of highly channelized AOC-derived-fluids in a dry mantle wedge, while later generations record fluid interaction with sediments and the serpentinized mantle. (ii) Fluid pulses across the subduction interface and rheological behavior of the near interface mantle wedge are not controlled by drastic changes in the nature of the slab input, but rather by the cooling of the serpentinizing subduction environment. (iii) The re-use of the same fluid pathways above the slab promotes the re-equilibration of isotopic signatures. (iv) Overpressures may build up upon jadeitite formation and promote brittle deformation events. This may lead to switches in deformation style and variations in permeability, thus changing fluid flow mode along the base of the mantle wedge.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.