Revealing the gradient strain forming mechanism: The semi-analytical modeling of chamfer extrusion machining

IF 7.5 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Xueqin Pang , Junyu Zhao , Wenjun Deng , Zhenping Wan , Yu Cheng
{"title":"Revealing the gradient strain forming mechanism: The semi-analytical modeling of chamfer extrusion machining","authors":"Xueqin Pang ,&nbsp;Junyu Zhao ,&nbsp;Wenjun Deng ,&nbsp;Zhenping Wan ,&nbsp;Yu Cheng","doi":"10.1016/j.jmatprotec.2025.119085","DOIUrl":null,"url":null,"abstract":"<div><div>In extrusion machining (EM), when the chip compression ratio is below a certain value (0.5–1.5), the interior microstructure of the formed chip can be transformed into the gradient structure. However, the low chip compression ratios (&lt;1) induce fragmentation in the tool-tip region. To address this limitation, the chamfer extrusion machining (CEM) process is proposed, enabling the production of the gradient structure chips while mitigating tool damage. This study develops a semi-analytical model to evaluate the strain gradient along the chip thickness direction in CEM. The core innovation of the model lies in the incorporation of non-constant material deviating angles in the calculations. This approach offers a more accurate representation of dynamic material flow and a reduction in prediction errors within variable shear zones. Additionally, the model incorporates the actual chip compression ratio <span><math><mi>λ</mi></math></span> as a critical variable, further enhancing the precision of the analysis. The results demonstrate that the predicted strain closely matches both experimental data and finite element values. As a result, a novel methodology is established for strain gradient calculation. This approach provides a universal framework that can be applied to a wide range of machining contexts, ensuring its versatility and reliability across different conditions.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"345 ","pages":"Article 119085"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625003759","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In extrusion machining (EM), when the chip compression ratio is below a certain value (0.5–1.5), the interior microstructure of the formed chip can be transformed into the gradient structure. However, the low chip compression ratios (<1) induce fragmentation in the tool-tip region. To address this limitation, the chamfer extrusion machining (CEM) process is proposed, enabling the production of the gradient structure chips while mitigating tool damage. This study develops a semi-analytical model to evaluate the strain gradient along the chip thickness direction in CEM. The core innovation of the model lies in the incorporation of non-constant material deviating angles in the calculations. This approach offers a more accurate representation of dynamic material flow and a reduction in prediction errors within variable shear zones. Additionally, the model incorporates the actual chip compression ratio λ as a critical variable, further enhancing the precision of the analysis. The results demonstrate that the predicted strain closely matches both experimental data and finite element values. As a result, a novel methodology is established for strain gradient calculation. This approach provides a universal framework that can be applied to a wide range of machining contexts, ensuring its versatility and reliability across different conditions.
揭示梯度应变成形机理:倒角挤压加工的半解析建模
在挤压加工(EM)中,当切屑压缩比低于一定值(0.5 ~ 1.5)时,成形切屑的内部组织可转变为梯度结构。然而,较低的切屑压缩比(<1)会导致刀尖区域出现碎裂。为了解决这一限制,提出了倒角挤压加工(CEM)工艺,在减少刀具损坏的同时,实现了梯度结构切屑的生产。本研究建立了一种半解析模型,以评估在CEM中沿切屑厚度方向的应变梯度。该模型的核心创新之处在于在计算中加入了非恒定的材料偏离角。这种方法提供了一个更准确的动态物质流动的表示和减少预测误差在可变剪切区。此外,该模型将实际芯片压缩比λ作为关键变量,进一步提高了分析的精度。结果表明,预测应变与实验数据和有限元值吻合较好。建立了一种新的应变梯度计算方法。这种方法提供了一个通用的框架,可以应用于广泛的加工环境,确保其在不同条件下的通用性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信