Neural network-based computational evaluation of periodic electroosmotic flow in propylene glycol–water ternary nanofluids with oxytactic microbes

IF 5.2 2区 化学 Q2 CHEMISTRY, PHYSICAL
B.M. Jewel Rana , Torikul Islam , Md. Yousuf Ali , Saiful Islam , Khan Enaet Hossain , Arnab Mukherjee , Md. Rafiqul Islam , Mohammad Afikuzzaman
{"title":"Neural network-based computational evaluation of periodic electroosmotic flow in propylene glycol–water ternary nanofluids with oxytactic microbes","authors":"B.M. Jewel Rana ,&nbsp;Torikul Islam ,&nbsp;Md. Yousuf Ali ,&nbsp;Saiful Islam ,&nbsp;Khan Enaet Hossain ,&nbsp;Arnab Mukherjee ,&nbsp;Md. Rafiqul Islam ,&nbsp;Mohammad Afikuzzaman","doi":"10.1016/j.molliq.2025.128593","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid evolution of artificial intelligence (AI) is revolutionizing molecular-scale data analysis, transport modeling, and the prediction of dynamic behavior in complex fluids. In this study, we present a novel application of an AI-driven artificial neural network (ANN) to investigate chaotic transport dynamics in periodic electroosmotic flow (PEOF) of Sutterby ternary nanofluids containing oxytactic microbes. The working fluid, a 50:50 mixture of propylene glycol and water infused with Fe₃O₄, TiO₂, and Al₂O₃ nanoparticles, is modeled flowing across a deformable porous geometry. The nonlinear governing equations are solved numerically using the finite difference method (FDM), with ANN employed to enhance predictive capability. Model validation shows remarkable accuracy, achieving mean squared errors between 10<sup>−7</sup> and 10<sup>−9</sup>, thereby confirming the robustness of the AI-assisted framework. The findings reveal that electroosmotic and magnetic parameters exert competing effects on fluid motion, while oxytactic microbes reduce concentration distribution. Increasing the Brownian motion parameter enhances random particle movement, resulting in higher temperatures and lower concentrations. Additionally, the density of motile microbes decreases with increasing Peclet and bio-Schmidt numbers. Importantly, tri-hybrid nanofluids exhibit superior thermal distribution compared with hybrid nanofluids, single nanofluids, and base fluids. This study is the first to integrate AI-driven ANN modeling with chaotic PEOF transport in Sutterby ternary nanofluids containing oxytactic microbes. Unlike previous works, it uniquely combines advanced AI techniques with nonlinear bio-nanofluid dynamics, achieving unprecedented predictive accuracy while uncovering new insights into the coupled roles of electroosmosis, magnetism, Brownian motion, and microbial activity. The outcomes provide a new pathway for AI-assisted optimization of nanofluid-based systems in wastewater treatment, microfluidics, and energy transport, enabling more efficient and sustainable technologies.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"437 ","pages":"Article 128593"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225017702","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of artificial intelligence (AI) is revolutionizing molecular-scale data analysis, transport modeling, and the prediction of dynamic behavior in complex fluids. In this study, we present a novel application of an AI-driven artificial neural network (ANN) to investigate chaotic transport dynamics in periodic electroosmotic flow (PEOF) of Sutterby ternary nanofluids containing oxytactic microbes. The working fluid, a 50:50 mixture of propylene glycol and water infused with Fe₃O₄, TiO₂, and Al₂O₃ nanoparticles, is modeled flowing across a deformable porous geometry. The nonlinear governing equations are solved numerically using the finite difference method (FDM), with ANN employed to enhance predictive capability. Model validation shows remarkable accuracy, achieving mean squared errors between 10−7 and 10−9, thereby confirming the robustness of the AI-assisted framework. The findings reveal that electroosmotic and magnetic parameters exert competing effects on fluid motion, while oxytactic microbes reduce concentration distribution. Increasing the Brownian motion parameter enhances random particle movement, resulting in higher temperatures and lower concentrations. Additionally, the density of motile microbes decreases with increasing Peclet and bio-Schmidt numbers. Importantly, tri-hybrid nanofluids exhibit superior thermal distribution compared with hybrid nanofluids, single nanofluids, and base fluids. This study is the first to integrate AI-driven ANN modeling with chaotic PEOF transport in Sutterby ternary nanofluids containing oxytactic microbes. Unlike previous works, it uniquely combines advanced AI techniques with nonlinear bio-nanofluid dynamics, achieving unprecedented predictive accuracy while uncovering new insights into the coupled roles of electroosmosis, magnetism, Brownian motion, and microbial activity. The outcomes provide a new pathway for AI-assisted optimization of nanofluid-based systems in wastewater treatment, microfluidics, and energy transport, enabling more efficient and sustainable technologies.
含氧趋化微生物的丙二醇-水三元纳米流体周期性电渗透流动的神经网络计算评价
人工智能(AI)的快速发展正在彻底改变分子尺度数据分析、输运建模和复杂流体动态行为预测。在这项研究中,我们提出了一种新的应用人工智能驱动的人工神经网络(ANN)来研究含氧趋合微生物的Sutterby三元纳米流体的周期性电渗透流动(PEOF)中的混沌输运动力学。工作流体是丙二醇和水的50:50混合物,注入Fe₃O₄,TiO₂和Al₂O₃纳米颗粒,被模拟成流过可变形的多孔几何结构。采用有限差分法(FDM)对非线性控制方程进行数值求解,并采用人工神经网络增强预测能力。模型验证显示出显著的准确性,均方误差在10−7和10−9之间,从而证实了人工智能辅助框架的鲁棒性。研究结果表明,电渗透和磁参数对流体运动产生竞争影响,而氧趋化微生物则降低了浓度分布。增加布朗运动参数增强随机粒子运动,导致更高的温度和更低的浓度。此外,随着Peclet数和bio-Schmidt数的增加,活动微生物的密度降低。重要的是,与混合纳米流体、单一纳米流体和基础流体相比,三混合纳米流体表现出更好的热分布。这项研究首次将人工智能驱动的人工神经网络建模与含氧趋合微生物的Sutterby三元纳米流体中的混沌PEOF传输相结合。与以前的工作不同,它独特地将先进的人工智能技术与非线性生物纳米流体动力学相结合,实现了前所未有的预测精度,同时揭示了电渗透、磁力、布朗运动和微生物活动耦合作用的新见解。研究结果为人工智能辅助优化废水处理、微流体和能源运输中的纳米流体系统提供了新的途径,实现了更高效和可持续的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信