Volcanic sulfur dioxide monitored from a constellation of FengYun hyperspectral infrared sounders in dawn-dusk, mid-morning, and afternoon sun-synchronous orbits

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Zhao-Cheng Zeng , Lieven Clarisse , Bruno Franco , Cathy Clerbaux , Nicolas Theys , Chengli Qi , Lu Lee , Lin Zhu , Xiuqing Hu , Mingjian Gu , Peng Zhang
{"title":"Volcanic sulfur dioxide monitored from a constellation of FengYun hyperspectral infrared sounders in dawn-dusk, mid-morning, and afternoon sun-synchronous orbits","authors":"Zhao-Cheng Zeng ,&nbsp;Lieven Clarisse ,&nbsp;Bruno Franco ,&nbsp;Cathy Clerbaux ,&nbsp;Nicolas Theys ,&nbsp;Chengli Qi ,&nbsp;Lu Lee ,&nbsp;Lin Zhu ,&nbsp;Xiuqing Hu ,&nbsp;Mingjian Gu ,&nbsp;Peng Zhang","doi":"10.1016/j.rse.2025.115057","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite observations offer a unique way of monitoring the spatial distribution, vertical structure and temporal variation of volcanic sulfur dioxide (SO<sub>2</sub>) plumes. In this study, we use observations from the Hyperspectral Infrared Atmospheric Sounder (HIRAS) constellation on board China's FengYun-3 (FY-3) meteorological satellites flying in three different sun-synchronous orbits, including dawn-dusk, mid-morning, and afternoon orbits. The constellation provides six global coverages (roughly every 4-h) each day, with equatorial overpass times at 5:30 am/pm for FY-3E, 10:00 am/pm for FY-3F, and 2:00 am/pm for FY-3D. We retrieve SO<sub>2</sub> total column and layer height from the Ruang volcanic eruptions in April 2024. The retrievals show consistency among the different HIRAS and are highly correlated with IASI and TROPOMI observations. The e-folding time of the volcanic SO<sub>2</sub> mass is estimated to be 9.0 ± 2.8 days, which is representative of a plume in the Upper Troposphere-Lower Stratosphere (UTLS). Lastly, we apply the methods to the eruptions of the Russia's Sheveluch volcano in November 2024 at high latitudes and show the effectiveness and high consistency among the HIRAS sensors in detecting the SO<sub>2</sub> signal. This study demonstrates the capability of a global constellation of FengYun hyperspectral infrared sounders to monitor SO<sub>2</sub> emissions from volcanic eruptions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"331 ","pages":"Article 115057"},"PeriodicalIF":11.4000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004614","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite observations offer a unique way of monitoring the spatial distribution, vertical structure and temporal variation of volcanic sulfur dioxide (SO2) plumes. In this study, we use observations from the Hyperspectral Infrared Atmospheric Sounder (HIRAS) constellation on board China's FengYun-3 (FY-3) meteorological satellites flying in three different sun-synchronous orbits, including dawn-dusk, mid-morning, and afternoon orbits. The constellation provides six global coverages (roughly every 4-h) each day, with equatorial overpass times at 5:30 am/pm for FY-3E, 10:00 am/pm for FY-3F, and 2:00 am/pm for FY-3D. We retrieve SO2 total column and layer height from the Ruang volcanic eruptions in April 2024. The retrievals show consistency among the different HIRAS and are highly correlated with IASI and TROPOMI observations. The e-folding time of the volcanic SO2 mass is estimated to be 9.0 ± 2.8 days, which is representative of a plume in the Upper Troposphere-Lower Stratosphere (UTLS). Lastly, we apply the methods to the eruptions of the Russia's Sheveluch volcano in November 2024 at high latitudes and show the effectiveness and high consistency among the HIRAS sensors in detecting the SO2 signal. This study demonstrates the capability of a global constellation of FengYun hyperspectral infrared sounders to monitor SO2 emissions from volcanic eruptions.
在黎明-黄昏、上午中段和下午的太阳同步轨道上,由风云高光谱红外探测器星座监测火山二氧化硫
卫星观测为监测火山二氧化硫(SO2)羽流的空间分布、垂直结构和时间变化提供了一种独特的方法。在这项研究中,我们使用了中国风云三号(FY-3)气象卫星上的高光谱红外大气探测器(HIRAS)星座的观测数据,这些卫星在三个不同的太阳同步轨道上飞行,包括黎明-黄昏、上午中段和下午轨道。该星座每天提供六次全球覆盖(大约每4小时一次),FY-3E的赤道立交点为上午5点半/下午,FY-3F为上午10点/下午,FY-3D为上午2点/下午。我们从2024年4月的阮氏火山喷发中提取了SO2总柱高度和层高度。检索结果显示不同HIRAS之间的一致性,并与IASI和TROPOMI观测结果高度相关。火山SO2物质的e折叠时间估计为9.0±2.8天,具有对流层上层-平流层下层(UTLS)羽流的代表性。最后,将该方法应用于2024年11月俄罗斯舍维鲁克火山高纬度地区的喷发,验证了HIRAS传感器在探测SO2信号方面的有效性和一致性。这项研究证明了风云高光谱红外探测器全球星座监测火山喷发二氧化硫排放的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信