Predicting Successful Weaning from Veno-Arterial ECMO Using Machine Learning.

Mathieu Beaudeau, Nicolas Nesseler, Jean-Philippe Verhoye, Erwan Flecher, Marc Cuggia, Boris Delange
{"title":"Predicting Successful Weaning from Veno-Arterial ECMO Using Machine Learning.","authors":"Mathieu Beaudeau, Nicolas Nesseler, Jean-Philippe Verhoye, Erwan Flecher, Marc Cuggia, Boris Delange","doi":"10.3233/SHTI251489","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal Membrane Oxygenation (ECMO) is a life-saving cardiopulmonary support for patients with acute heart failure. However, the process of weaning from veno-arterial (V-A) ECMO remains complex and risky. We developed a machine learning-based predictive model to assist clinicians in identifying patients with a high probability of successful weaning. This retrospective monocentric study included 122 patients admitted to Rennes University Hospital between January 2020 and January 2023. Data from the eHOP clinical data warehouse were used to train and evaluate various machine learning algorithms, including Random Forest, XGBoost, KNN, SVM, and regularized logistic regressions. The best-performing models showed an AUC of 0.84-0.86, with XGBoost offering the highest results (0.86 [0.72-0.96]). Key predictors included ECMO flow rate, oxygenation fraction (FmO2), and duration of ECMO. While these results are promising, further validation is required before such tools can be translated into clinical decision-making processes.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"27-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracorporeal Membrane Oxygenation (ECMO) is a life-saving cardiopulmonary support for patients with acute heart failure. However, the process of weaning from veno-arterial (V-A) ECMO remains complex and risky. We developed a machine learning-based predictive model to assist clinicians in identifying patients with a high probability of successful weaning. This retrospective monocentric study included 122 patients admitted to Rennes University Hospital between January 2020 and January 2023. Data from the eHOP clinical data warehouse were used to train and evaluate various machine learning algorithms, including Random Forest, XGBoost, KNN, SVM, and regularized logistic regressions. The best-performing models showed an AUC of 0.84-0.86, with XGBoost offering the highest results (0.86 [0.72-0.96]). Key predictors included ECMO flow rate, oxygenation fraction (FmO2), and duration of ECMO. While these results are promising, further validation is required before such tools can be translated into clinical decision-making processes.

使用机器学习预测静脉-动脉ECMO成功脱机。
体外膜氧合(ECMO)是急性心力衰竭患者的救命心肺支持。然而,静脉-动脉(V-A) ECMO的脱机过程仍然是复杂和危险的。我们开发了一个基于机器学习的预测模型,以帮助临床医生识别高概率成功断奶的患者。这项回顾性单中心研究纳入了2020年1月至2023年1月期间雷恩大学医院收治的122例患者。来自eHOP临床数据仓库的数据用于训练和评估各种机器学习算法,包括随机森林,XGBoost, KNN, SVM和正则化逻辑回归。表现最好的模型的AUC为0.84-0.86,其中XGBoost的结果最高(0.86[0.72-0.96])。主要预测指标包括ECMO流量、氧合分数(FmO2)和ECMO持续时间。虽然这些结果很有希望,但在将这些工具转化为临床决策过程之前,还需要进一步的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信