Validation and Evaluation as Essentials to Ensuring Safe AI Health Applications.

Michael Rigby, Elisavet Andrikopoulou, Mirela Prgomet, Stephanie Medlock, Zoie Sy Wong, Kathrin Cresswell
{"title":"Validation and Evaluation as Essentials to Ensuring Safe AI Health Applications.","authors":"Michael Rigby, Elisavet Andrikopoulou, Mirela Prgomet, Stephanie Medlock, Zoie Sy Wong, Kathrin Cresswell","doi":"10.3233/SHTI251494","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is a rapidly growing technology within health informatics, but it is not subject to the rigor of scientific and safety validation required for all other new health techniques. Moreover, some functions of health AI cannot only introduce biases but can then reinforce and spread them by building on them. Thus, while health AI may bring benefit, it can also pose risks for safety and efficiency, as end users cannot rely on rigorous pre-implementation evidence or in-use validation. This review aims to revisit the principles and techniques already developed in health informatics, to build scientific principles for AI evaluation and the production of evidence. The Precautionary Principle provides further justification for such processes, and continuous quality improvement methods can add assurance. Developers should be expected to provide a robust evidence and evaluation trail, and clinicians and patient groups should expect this to be required by policy makers. This needs to be balanced with a need for developing pragmatic and agile evaluation methods in this fast-evolving area, to deepen knowledge and to guard against the risk of hidden perpetuation of errors.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"52-56"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) is a rapidly growing technology within health informatics, but it is not subject to the rigor of scientific and safety validation required for all other new health techniques. Moreover, some functions of health AI cannot only introduce biases but can then reinforce and spread them by building on them. Thus, while health AI may bring benefit, it can also pose risks for safety and efficiency, as end users cannot rely on rigorous pre-implementation evidence or in-use validation. This review aims to revisit the principles and techniques already developed in health informatics, to build scientific principles for AI evaluation and the production of evidence. The Precautionary Principle provides further justification for such processes, and continuous quality improvement methods can add assurance. Developers should be expected to provide a robust evidence and evaluation trail, and clinicians and patient groups should expect this to be required by policy makers. This needs to be balanced with a need for developing pragmatic and agile evaluation methods in this fast-evolving area, to deepen knowledge and to guard against the risk of hidden perpetuation of errors.

验证和评估是确保安全的人工智能健康应用的关键。
人工智能(AI)是卫生信息学中的一项快速发展的技术,但它不受所有其他新卫生技术所需的严格科学和安全验证的约束。此外,健康AI的某些功能不仅可以引入偏见,还可以通过建立偏见来加强和传播偏见。因此,尽管卫生人工智能可能带来好处,但它也可能对安全和效率构成风险,因为最终用户不能依赖严格的实施前证据或使用中验证。本次审查的目的是重新审视卫生信息学中已经开发的原则和技术,为人工智能评估和证据的产生建立科学原则。预防原则为这些过程提供了进一步的理由,持续的质量改进方法可以增加保证。应该期望开发人员提供可靠的证据和评估线索,而临床医生和患者群体应该期望决策者对此提出要求。这需要与在这个快速发展的领域中开发实用和敏捷的评估方法的需求相平衡,以加深知识并防范隐藏的错误永久存在的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信