Evaluation of Clinical AI-Based Diagnostic Solutions - A Multiperspective, Interdisciplinary Approach.

Thomas Karopka, Carina Østervig Byskov, Martin Dyrba
{"title":"Evaluation of Clinical AI-Based Diagnostic Solutions - A Multiperspective, Interdisciplinary Approach.","authors":"Thomas Karopka, Carina Østervig Byskov, Martin Dyrba","doi":"10.3233/SHTI251485","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The primary goal of developing new clinical diagnostic solutions is to create value for healthcare. The rapid rise of artificial intelligence (AI)-based diagnostics has led to a surge in publications and, to a lesser extent, market-ready tools. Clinicians must now integrate these innovations to manage increasing data volumes, making it challenging to assess the added value of new tools in the diagnostic workflow.</p><p><strong>Methods: </strong>The INTERREG Baltic Sea Region project \"Clinical Artificial Intelligence-Based Diagnostics (CAIDX)\" developed a comprehensive blueprint guiding the process from identifying clinical needs to implementing certified AI products in diagnostics. The approach emphasizes systematic evaluation at each development stage and throughout the AI solution's lifecycle, incorporating diverse stakeholder perspectives and a range of evaluation methodologies.</p><p><strong>Results: </strong>The CAIDX project produced the \"Clinical AI-Pathway,\" an end-to-end framework for integrating AI-based diagnostic tools. This framework provides methodologies and tools for systematic evaluation at all stages, ensuring alignment with clinical needs and rigorous assessment of value.</p><p><strong>Conclusions: </strong>Systematic, multi-perspective evaluation is crucial for successfully integrating AI diagnostics into clinical practice. The \"Clinical AI-Pathway\" framework offers a structured method for assessing and implementing AI solutions, supporting their value-driven adoption in healthcare. The framework, available at ClinicalAI.eu, aims to facilitate broader and more effective use of AI in clinical diagnostics.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"7-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The primary goal of developing new clinical diagnostic solutions is to create value for healthcare. The rapid rise of artificial intelligence (AI)-based diagnostics has led to a surge in publications and, to a lesser extent, market-ready tools. Clinicians must now integrate these innovations to manage increasing data volumes, making it challenging to assess the added value of new tools in the diagnostic workflow.

Methods: The INTERREG Baltic Sea Region project "Clinical Artificial Intelligence-Based Diagnostics (CAIDX)" developed a comprehensive blueprint guiding the process from identifying clinical needs to implementing certified AI products in diagnostics. The approach emphasizes systematic evaluation at each development stage and throughout the AI solution's lifecycle, incorporating diverse stakeholder perspectives and a range of evaluation methodologies.

Results: The CAIDX project produced the "Clinical AI-Pathway," an end-to-end framework for integrating AI-based diagnostic tools. This framework provides methodologies and tools for systematic evaluation at all stages, ensuring alignment with clinical needs and rigorous assessment of value.

Conclusions: Systematic, multi-perspective evaluation is crucial for successfully integrating AI diagnostics into clinical practice. The "Clinical AI-Pathway" framework offers a structured method for assessing and implementing AI solutions, supporting their value-driven adoption in healthcare. The framework, available at ClinicalAI.eu, aims to facilitate broader and more effective use of AI in clinical diagnostics.

临床人工智能诊断解决方案的评估-多视角,跨学科的方法。
简介:开发新的临床诊断解决方案的主要目标是为医疗保健创造价值。基于人工智能(AI)的诊断方法的迅速崛起导致了出版物的激增,并且在较小程度上导致了市场就绪工具的激增。临床医生现在必须整合这些创新来管理不断增加的数据量,这使得评估新工具在诊断工作流程中的附加价值变得具有挑战性。方法:INTERREG波罗的海地区项目“基于临床人工智能的诊断(CAIDX)”制定了一个全面的蓝图,指导从确定临床需求到在诊断中实施经认证的人工智能产品的过程。该方法强调在每个开发阶段和整个人工智能解决方案的生命周期中进行系统评估,结合不同的利益相关者观点和一系列评估方法。结果:CAIDX项目产生了“临床人工智能路径”,这是一个整合基于人工智能的诊断工具的端到端框架。该框架为所有阶段的系统评估提供了方法和工具,确保与临床需求和严格的价值评估保持一致。结论:系统的、多角度的评估对于成功地将人工智能诊断融入临床实践至关重要。“临床人工智能路径”框架提供了评估和实施人工智能解决方案的结构化方法,支持其在医疗保健领域的价值驱动应用。该框架可在ClinicalAI上获得。旨在促进人工智能在临床诊断中的更广泛和更有效的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信