A Semantic-Driven for Cohort Data Harmonisation into OMOP CDM Schema.

Raquel Paradinha, Vicente Barros, João Rafael Almeida, José Luís Oliveira
{"title":"A Semantic-Driven for Cohort Data Harmonisation into OMOP CDM Schema.","authors":"Raquel Paradinha, Vicente Barros, João Rafael Almeida, José Luís Oliveira","doi":"10.3233/SHTI251524","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical research often requires integrating data from diverse sources, which differ not only in structure but also in semantics and language. Traditional extract-transform-load (ETL) pipelines struggle to handle semantic variability and lack built-in support for multilingual or ontology-driven harmonisation. This fragmentation limits the interoperability and reuse of clinical datasets in large-scale analyses. In this paper, we propose an integrated framework that combines an embedding-based concept mapping engine with an automated ETL pipeline using Apache Airflow. The mapping engine uses transformer-based embeddings to align clinical terms with standard concepts, producing outputs in White Rabbit and Usagi-compatible formats to ensure backward interoperability. We validated the system using multilingual real-world datasets demonstrating its ability to handle heterogeneous inputs and maintain end-to-end reproducibility.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"190-194"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical research often requires integrating data from diverse sources, which differ not only in structure but also in semantics and language. Traditional extract-transform-load (ETL) pipelines struggle to handle semantic variability and lack built-in support for multilingual or ontology-driven harmonisation. This fragmentation limits the interoperability and reuse of clinical datasets in large-scale analyses. In this paper, we propose an integrated framework that combines an embedding-based concept mapping engine with an automated ETL pipeline using Apache Airflow. The mapping engine uses transformer-based embeddings to align clinical terms with standard concepts, producing outputs in White Rabbit and Usagi-compatible formats to ensure backward interoperability. We validated the system using multilingual real-world datasets demonstrating its ability to handle heterogeneous inputs and maintain end-to-end reproducibility.

语义驱动的队列数据协调到OMOP CDM模式。
临床研究往往需要整合来自不同来源的数据,这些数据不仅在结构上不同,而且在语义和语言上也不同。传统的提取-转换-加载(ETL)管道难以处理语义可变性,并且缺乏对多语言或本体驱动的协调的内置支持。这种碎片化限制了临床数据集在大规模分析中的互操作性和重用性。在本文中,我们提出了一个集成框架,它结合了基于嵌入的概念映射引擎和使用Apache Airflow的自动化ETL管道。映射引擎使用基于变压器的嵌入将临床术语与标准概念对齐,以White Rabbit和usagi兼容的格式生成输出,以确保向后互操作性。我们使用多语言真实世界数据集验证了该系统,展示了其处理异构输入和保持端到端可重复性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信