Simulating Empathic Interactions with Synthetic LLM-Generated Cancer Patient Personas.

Rezaur Rashid, Saba Kheirinejad, Brianna M White, Soheil Hashtarkhani, Parnian Kheirkhah Rahimabad, Fekede A Kumsa, Lokesh Chinthala, Janet A Zink, Christopher L Brett, Robert L Davis, David L Schwartz, Arash Shaban-Nejad
{"title":"Simulating Empathic Interactions with Synthetic LLM-Generated Cancer Patient Personas.","authors":"Rezaur Rashid, Saba Kheirinejad, Brianna M White, Soheil Hashtarkhani, Parnian Kheirkhah Rahimabad, Fekede A Kumsa, Lokesh Chinthala, Janet A Zink, Christopher L Brett, Robert L Davis, David L Schwartz, Arash Shaban-Nejad","doi":"10.3233/SHTI251498","DOIUrl":null,"url":null,"abstract":"<p><p>Unplanned interruptions in radiation therapy (RT) increase clinical risks, yet proactive, personalized psychosocial support remains limited. This study presents a proof-of-concept framework that simulates and evaluates Empathic AI-patient interactions using large language models (LLMs) and synthetic oncology patient personas. Leveraging a de-identified dataset of patient demographics, clinical features, and social determinants of health (SDoH), we created realistic personas that interact with an empathic AI assistant in simulated dialogues. The system uses dual LLMs, one for persona generation and another for empathic response, which engage in multi-turn dialogue pairs per persona. We evaluated the outputs using statistical similarity tests, quantitative metrics (BERTScore, SDoH relevance, empathy, persona distinctness), and qualitative human assessment. The results demonstrate the feasibility of scalable, secure, and context-aware dialogue for early-stage AI development. This HIPAA/GDPR compliant framework supports ethical testing of empathic clinical support tools and lays the groundwork for AI-driven interventions to improve RT adherence.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"72-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unplanned interruptions in radiation therapy (RT) increase clinical risks, yet proactive, personalized psychosocial support remains limited. This study presents a proof-of-concept framework that simulates and evaluates Empathic AI-patient interactions using large language models (LLMs) and synthetic oncology patient personas. Leveraging a de-identified dataset of patient demographics, clinical features, and social determinants of health (SDoH), we created realistic personas that interact with an empathic AI assistant in simulated dialogues. The system uses dual LLMs, one for persona generation and another for empathic response, which engage in multi-turn dialogue pairs per persona. We evaluated the outputs using statistical similarity tests, quantitative metrics (BERTScore, SDoH relevance, empathy, persona distinctness), and qualitative human assessment. The results demonstrate the feasibility of scalable, secure, and context-aware dialogue for early-stage AI development. This HIPAA/GDPR compliant framework supports ethical testing of empathic clinical support tools and lays the groundwork for AI-driven interventions to improve RT adherence.

模拟共情互动与合成法学硕士生成的癌症患者人物角色。
放射治疗(RT)的意外中断增加了临床风险,然而积极的、个性化的社会心理支持仍然有限。本研究提出了一个概念验证框架,该框架使用大型语言模型(llm)和合成肿瘤患者角色模拟和评估共情ai -患者互动。利用患者人口统计、临床特征和健康社会决定因素(SDoH)的去识别数据集,我们创建了逼真的人物角色,在模拟对话中与移情人工智能助手互动。该系统使用双llm,一个用于角色生成,另一个用于移情反应,每个角色参与多回合对话对。我们使用统计相似性测试、定量指标(BERTScore、SDoH相关性、共情、角色独特性)和定性的人类评估来评估输出。结果证明了早期人工智能开发中可扩展、安全和上下文感知对话的可行性。这个符合HIPAA/GDPR的框架支持共情临床支持工具的道德测试,并为人工智能驱动的干预措施奠定基础,以提高RT的依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信