LeOp-GS: Learned Optimizer with Dynamic Gradient Update for Sparse-View 3DGS.

IF 6.5
Xinyu Lei, Xuan Wang, Longjun Liu, Haoteng Li, Haonan Zhang
{"title":"LeOp-GS: Learned Optimizer with Dynamic Gradient Update for Sparse-View 3DGS.","authors":"Xinyu Lei, Xuan Wang, Longjun Liu, Haoteng Li, Haonan Zhang","doi":"10.1109/TVCG.2025.3616156","DOIUrl":null,"url":null,"abstract":"<p><p>3D Gaussian Splatting (3DGS) achieves remarkable speed and performance in novel view synthesis but suffers from overfitting and degraded reconstruction when handling sparse-view inputs. This paper innovatively addresses this challenge from a learning-to-optimize perspective by leveraging a learned optimizer (i.e., a multi-layer perceptron, MLP) to update the relevant parameters of 3DGS during the optimization process. Evidently, using a single MLP to handle all optimization variables, whose numbers may even vary during the optimization process, is impossible. Therefore, we present a point-wise position-aware optimizer that updates the parameters for each 3DGS point individually. Specifically, it takes the point coordinates and corresponding parameter values as input to predict the updates, thereby allowing efficient and adaptive optimization. In the case of sparse view modeling, the learned optimizer imposes position-aware constraints on the parameter updates during optimization. This effectively encourages the relevant parameters to converge stably to better solutions. To update the optimizer's parameters, we propose a dynamic gradient update strategy based on spatial perturbation and weighted fusion, enabling the optimizer to capture broader contextual information. Experiments demonstrate that our method effectively addresses the problem of modeling 3DGS from sparse training views, achieving state-of-the-art results across multiple datasets.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3616156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D Gaussian Splatting (3DGS) achieves remarkable speed and performance in novel view synthesis but suffers from overfitting and degraded reconstruction when handling sparse-view inputs. This paper innovatively addresses this challenge from a learning-to-optimize perspective by leveraging a learned optimizer (i.e., a multi-layer perceptron, MLP) to update the relevant parameters of 3DGS during the optimization process. Evidently, using a single MLP to handle all optimization variables, whose numbers may even vary during the optimization process, is impossible. Therefore, we present a point-wise position-aware optimizer that updates the parameters for each 3DGS point individually. Specifically, it takes the point coordinates and corresponding parameter values as input to predict the updates, thereby allowing efficient and adaptive optimization. In the case of sparse view modeling, the learned optimizer imposes position-aware constraints on the parameter updates during optimization. This effectively encourages the relevant parameters to converge stably to better solutions. To update the optimizer's parameters, we propose a dynamic gradient update strategy based on spatial perturbation and weighted fusion, enabling the optimizer to capture broader contextual information. Experiments demonstrate that our method effectively addresses the problem of modeling 3DGS from sparse training views, achieving state-of-the-art results across multiple datasets.

LeOp-GS:学习优化器与动态梯度更新稀疏视图3DGS。
3D高斯溅射(3DGS)在新视图合成中取得了显著的速度和性能,但在处理稀疏视图输入时存在过拟合和重构退化的问题。本文创新性地从学习优化的角度解决了这一挑战,利用学习优化器(即多层感知器,MLP)在优化过程中更新3DGS的相关参数。显然,使用单个MLP来处理所有优化变量是不可能的,这些变量的数量甚至可能在优化过程中发生变化。因此,我们提出了一个逐点的位置感知优化器,它可以单独更新每个3DGS点的参数。具体来说,它以点坐标和相应的参数值为输入预测更新,从而实现高效的自适应优化。在稀疏视图建模的情况下,学习优化器在优化过程中对参数更新施加位置感知约束。这有效地促使相关参数稳定地收敛到更好的解。为了更新优化器的参数,我们提出了一种基于空间摄动和加权融合的动态梯度更新策略,使优化器能够捕获更广泛的上下文信息。实验表明,我们的方法有效地解决了从稀疏训练视图建模3DGS的问题,在多个数据集上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信