OncovigIA: Artificial Intelligence for Early Lung Cancer Detection and Referral in a Chilean Public Hospital.

IF 2.8 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-10-01 Epub Date: 2025-10-02 DOI:10.1200/CCI-25-00035
Jose Peña, Sebastián Santana, Juan Cristobal Morales, Natalie Pinto, Mariano Suárez, Carola Sánchez, Juan Carlos Opazo, Rodrigo Villarroel, Claudio Montenegro, Bruno Nervi, Richard Weber
{"title":"OncovigIA: Artificial Intelligence for Early Lung Cancer Detection and Referral in a Chilean Public Hospital.","authors":"Jose Peña, Sebastián Santana, Juan Cristobal Morales, Natalie Pinto, Mariano Suárez, Carola Sánchez, Juan Carlos Opazo, Rodrigo Villarroel, Claudio Montenegro, Bruno Nervi, Richard Weber","doi":"10.1200/CCI-25-00035","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Lung cancer is a leading cause of death in Chile, where late-stage diagnoses and high mortality rates prevail. Here, we describe the development of <i>OncovigIA</i>, a novel digital tool powered by natural language processing that enhances the identification of potential lung cancer cases by surveilling computed tomography (CT) reports in a large public Hospital in Santiago, Chile.</p><p><strong>Materials and methods: </strong>We combined natural language processing and large language models with state-of-the-art machine learning techniques and approaches to treat unbalanced data sets and determine the best solution to implement in <i>OncovigIA</i>. Focusing on key sections of the reports and using various machine learning models, including a balanced Random Forest, the tool achieved high performance with 0.90 accuracy and 0.84 F1-score on the test set.</p><p><strong>Results: </strong>When applied to 13,326 CT chest reports from 2022, it successfully identified 377 CTs of patients with suspected lung cancer previously undetected and not managed by the multidisciplinary local lung cancer team.</p><p><strong>Conclusion: </strong>This study underscores the potential of artificial intelligence in early cancer detection and highlights the importance of its integration into local health care ecosystems. By promptly increasing the number of patients referred for specialized management, the tool <i>OncovigIA</i> offers a promising path toward improving lung cancer survival rates in Chile and beyond. Moreover, this article provides avenues for its broader implementation, extending it to other cancer types and/or health care-related texts for continuous surveillance, aiming at the early referral and treatment of cancer in low-resource settings.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2500035"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-25-00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Lung cancer is a leading cause of death in Chile, where late-stage diagnoses and high mortality rates prevail. Here, we describe the development of OncovigIA, a novel digital tool powered by natural language processing that enhances the identification of potential lung cancer cases by surveilling computed tomography (CT) reports in a large public Hospital in Santiago, Chile.

Materials and methods: We combined natural language processing and large language models with state-of-the-art machine learning techniques and approaches to treat unbalanced data sets and determine the best solution to implement in OncovigIA. Focusing on key sections of the reports and using various machine learning models, including a balanced Random Forest, the tool achieved high performance with 0.90 accuracy and 0.84 F1-score on the test set.

Results: When applied to 13,326 CT chest reports from 2022, it successfully identified 377 CTs of patients with suspected lung cancer previously undetected and not managed by the multidisciplinary local lung cancer team.

Conclusion: This study underscores the potential of artificial intelligence in early cancer detection and highlights the importance of its integration into local health care ecosystems. By promptly increasing the number of patients referred for specialized management, the tool OncovigIA offers a promising path toward improving lung cancer survival rates in Chile and beyond. Moreover, this article provides avenues for its broader implementation, extending it to other cancer types and/or health care-related texts for continuous surveillance, aiming at the early referral and treatment of cancer in low-resource settings.

OncovigIA:智利一家公立医院早期肺癌检测和转诊的人工智能。
目的:肺癌是智利的主要死亡原因,在智利,晚期诊断和高死亡率普遍存在。在这里,我们描述了OncovigIA的发展,这是一种由自然语言处理驱动的新型数字工具,通过监测智利圣地亚哥一家大型公立医院的计算机断层扫描(CT)报告,增强了对潜在肺癌病例的识别。材料和方法:我们将自然语言处理和大型语言模型与最先进的机器学习技术和方法相结合,以处理不平衡的数据集,并确定在OncovigIA中实施的最佳解决方案。该工具专注于报告的关键部分,并使用各种机器学习模型,包括平衡随机森林,在测试集中实现了0.90精度和0.84 f1分数的高性能。结果:将其应用于2022年的13326例CT胸部报告,成功识别出377例以前未被当地多学科肺癌团队发现和管理的疑似肺癌患者的CT。结论:本研究强调了人工智能在早期癌症检测中的潜力,并强调了将其融入当地卫生保健生态系统的重要性。通过迅速增加接受专门治疗的患者数量,OncovigIA工具为提高智利及其他地区的肺癌生存率提供了一条有希望的途径。此外,本文为其更广泛的实施提供了途径,将其扩展到其他癌症类型和/或卫生保健相关文本,以进行持续监测,旨在低资源环境中癌症的早期转诊和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信