The χ -Binding Function of d-Directional Segment Graphs.

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2025-01-01 Epub Date: 2025-05-17 DOI:10.1007/s00454-025-00737-2
Lech Duraj, Ross J Kang, Hoang La, Jonathan Narboni, Filip Pokrývka, Clément Rambaud, Amadeus Reinald
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">The <ns0:math><ns0:mi>χ</ns0:mi></ns0:math> -Binding Function of <i>d</i>-Directional Segment Graphs.","authors":"Lech Duraj, Ross J Kang, Hoang La, Jonathan Narboni, Filip Pokrývka, Clément Rambaud, Amadeus Reinald","doi":"10.1007/s00454-025-00737-2","DOIUrl":null,"url":null,"abstract":"<p><p>Given a positive integer <i>d</i>, the class <i>d</i>-DIR is defined as all those intersection graphs formed from a finite collection of line segments in <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> having at most <i>d</i> slopes. Since each slope induces an interval graph, it easily follows for every <i>G</i> in <i>d</i>-DIR with clique number at most <math><mi>ω</mi></math> that the chromatic number <math><mrow><mi>χ</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </math> of <i>G</i> is at most <math><mrow><mi>d</mi> <mi>ω</mi></mrow> </math> . We show for every even value of <math><mi>ω</mi></math> how to construct a graph in <i>d</i>-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the <math><mi>χ</mi></math> -binding function of <i>d</i>-DIR is <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mi>ω</mi></mrow> </math> for <math><mi>ω</mi></math> even and <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mo>(</mo> <mi>ω</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mn>1</mn></mrow> </math> for <math><mi>ω</mi></math> odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> .</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 3","pages":"758-770"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-025-00737-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a positive integer d, the class d-DIR is defined as all those intersection graphs formed from a finite collection of line segments in R 2 having at most d slopes. Since each slope induces an interval graph, it easily follows for every G in d-DIR with clique number at most ω that the chromatic number χ ( G ) of G is at most d ω . We show for every even value of ω how to construct a graph in d-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the χ -binding function of d-DIR is ω d ω for ω even and ω d ( ω - 1 ) + 1 for ω odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case d = 2 .

Abstract Image

Abstract Image

Abstract Image

d向线段图的χ -绑定函数。
给定正整数d,类d- dir定义为r2中有最多d个斜率的线段的有限集合所形成的所有相交图。由于每个斜率都可以导出一个区间图,因此对于团数不超过ω的d- dir中的每一个G,很容易得出G的色数χ (G)不超过d ω。对于ω的每一个偶值,我们证明了如何在d-DIR中构造一个完全满足这个界的图。这部分证实了Bhattacharya, Dvořák和Noorizadeh的猜想。更进一步,我们证明了d- dir的χ -binding函数对于ω偶为ω∑d ω,对于ω奇为ω∑d (ω - 1) + 1。这扩展了Kostochka和Nešetřil先前处理特殊情况d = 2的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信