Anna Lindeberg, Guillaume E Scholz, Nicolas Wieseke, Marc Hellmuth
{"title":"Orthology and near-cographs in the context of phylogenetic networks.","authors":"Anna Lindeberg, Guillaume E Scholz, Nicolas Wieseke, Marc Hellmuth","doi":"10.1186/s13015-025-00285-7","DOIUrl":null,"url":null,"abstract":"<p><p>Orthologous genes, which arise through speciation, play a key role in comparative genomics and functional inference. In particular, graph-based methods allow for the inference of orthology estimates without prior knowledge of the underlying gene or species trees. This results in orthology graphs, where each vertex represents a gene, and an edge exists between two vertices if the corresponding genes are estimated to be orthologs. Orthology graphs inferred under a tree-like evolutionary model must be cographs. However, real-world data often deviate from this property, either due to noise in the data, errors in inference methods or, simply, because evolution follows a network-like rather than a tree-like process. The latter, in particular, raises the question of whether and how orthology graphs can be derived from or, equivalently, are explained by phylogenetic networks. In this work, we study the constraints imposed on orthology graphs when the underlying evolutionary history follows a phylogenetic network instead of a tree. We show that any orthology graph can be represented by a sufficiently complex level-k network. However, such networks lack biologically meaningful constraints. In contrast, level-1 networks provide a simpler explanation, and we establish characterizations for level-1 explainable orthology graphs, i.e., those derived from level-1 evolutionary histories. To this end, we employ modular decomposition, a classical technique for studying graph structures. Specifically, an arbitrary graph is level-1 explainable if and only if each primitive subgraph is a near-cograph (a graph in which the removal of a single vertex results in a cograph). Additionally, we present a linear-time algorithm to recognize level-1 explainable orthology graphs and to construct a level-1 network that explains them, if such a network exists. Finally, we demonstrate the close relationship of level-1 explainable orthology graphs to the substitution operation, weakly chordal and perfect graphs, as well as graphs with twin-width at most 2.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"19"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-025-00285-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Orthologous genes, which arise through speciation, play a key role in comparative genomics and functional inference. In particular, graph-based methods allow for the inference of orthology estimates without prior knowledge of the underlying gene or species trees. This results in orthology graphs, where each vertex represents a gene, and an edge exists between two vertices if the corresponding genes are estimated to be orthologs. Orthology graphs inferred under a tree-like evolutionary model must be cographs. However, real-world data often deviate from this property, either due to noise in the data, errors in inference methods or, simply, because evolution follows a network-like rather than a tree-like process. The latter, in particular, raises the question of whether and how orthology graphs can be derived from or, equivalently, are explained by phylogenetic networks. In this work, we study the constraints imposed on orthology graphs when the underlying evolutionary history follows a phylogenetic network instead of a tree. We show that any orthology graph can be represented by a sufficiently complex level-k network. However, such networks lack biologically meaningful constraints. In contrast, level-1 networks provide a simpler explanation, and we establish characterizations for level-1 explainable orthology graphs, i.e., those derived from level-1 evolutionary histories. To this end, we employ modular decomposition, a classical technique for studying graph structures. Specifically, an arbitrary graph is level-1 explainable if and only if each primitive subgraph is a near-cograph (a graph in which the removal of a single vertex results in a cograph). Additionally, we present a linear-time algorithm to recognize level-1 explainable orthology graphs and to construct a level-1 network that explains them, if such a network exists. Finally, we demonstrate the close relationship of level-1 explainable orthology graphs to the substitution operation, weakly chordal and perfect graphs, as well as graphs with twin-width at most 2.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.