Sai Shyam Shyam, Nikhil Nandan, Vaibhav Anand, Mohit Kumar Jolly, Kishore Hari
{"title":"Mutually inhibiting teams of nodes: A predictive framework for structure-dynamics relationships in gene regulatory networks.","authors":"Sai Shyam Shyam, Nikhil Nandan, Vaibhav Anand, Mohit Kumar Jolly, Kishore Hari","doi":"10.1088/1478-3975/ae0ef6","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic plasticity-the reversible switching of cell-states-is a central tenet of development, regeneration, and cancer progression. These transitions are governed by gene regulatory networks (GRNs), whose topological features strongly influence their dynamics. While toggle switches (mutually inhibitory feedback loops between two transcription factors) are a common motif observed for binary cell-fate decisions, GRNs across diverse contexts often exhibit a more general structure: two mutually inhibiting teams of nodes. Here, we investigate the teams of nodes as a potential topological design principle of GRNs. We first analyze GRNs from the Cell Collective database and introduce a metric, impurity, which quantifies the fraction of edges inconsistent with an idealized two-team architecture. Impurity correlates strongly with statistical properties of GRN phenotypic landscapes, highlighting its predictive value. To further probe this relationship, we simulate artificial two-team networks (TTNs) using both continuous (RACIPE) and discrete (Boolean) formalisms across varying impurity, density, and network size values. TTNs exhibit toggle-switch-like robustness under perturbations and enable accurate prediction of dynamical features such as inter-team correlations and steady-state entropy. Together, our findings establish the teams paradigm as a unifying principle linking GRN topology to dynamics, with broad implications for inferring coarse-grained network properties from high-throughput sequencing data.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ae0ef6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic plasticity-the reversible switching of cell-states-is a central tenet of development, regeneration, and cancer progression. These transitions are governed by gene regulatory networks (GRNs), whose topological features strongly influence their dynamics. While toggle switches (mutually inhibitory feedback loops between two transcription factors) are a common motif observed for binary cell-fate decisions, GRNs across diverse contexts often exhibit a more general structure: two mutually inhibiting teams of nodes. Here, we investigate the teams of nodes as a potential topological design principle of GRNs. We first analyze GRNs from the Cell Collective database and introduce a metric, impurity, which quantifies the fraction of edges inconsistent with an idealized two-team architecture. Impurity correlates strongly with statistical properties of GRN phenotypic landscapes, highlighting its predictive value. To further probe this relationship, we simulate artificial two-team networks (TTNs) using both continuous (RACIPE) and discrete (Boolean) formalisms across varying impurity, density, and network size values. TTNs exhibit toggle-switch-like robustness under perturbations and enable accurate prediction of dynamical features such as inter-team correlations and steady-state entropy. Together, our findings establish the teams paradigm as a unifying principle linking GRN topology to dynamics, with broad implications for inferring coarse-grained network properties from high-throughput sequencing data.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.