Tal Barkai, Oran Yakubovsky, Yael Korem Kohanim, Keren Bahar Halpern, Sapir Shir, Noa Oren, Michal Fine, Paz Kelmer, Amit Talmon, Alon Israeli, Niv Pencovich, Ron Pery, Ido Nachmany, Shalev Itzkovitz
{"title":"Transcriptomic profiling of shed cells enables spatial mapping of cellular turnover in human organs.","authors":"Tal Barkai, Oran Yakubovsky, Yael Korem Kohanim, Keren Bahar Halpern, Sapir Shir, Noa Oren, Michal Fine, Paz Kelmer, Amit Talmon, Alon Israeli, Niv Pencovich, Ron Pery, Ido Nachmany, Shalev Itzkovitz","doi":"10.1038/s44320-025-00154-w","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell atlases provide valuable insights into gene expression states but lack information on cellular dynamics. Understanding cell turnover rates-the time between a cell's birth and death-can shed light on stemness potential and susceptibility to damage. However, measuring turnover rates in human organs has been a significant challenge. In this study, we integrate transcriptomic data from both tissue and shed cells to assign turnover scores to individual cells, leveraging their expression profiles in spatially resolved expression atlases. By performing RNA sequencing on shed cells from the upper gastrointestinal tract, collected via nasogastric tubes, we infer turnover rates in the human esophagus, stomach, and small intestine. In addition, we analyze colonic fecal washes to map turnover patterns in the human large intestine. Our findings reveal a subset of short-lived, interferon-stimulated colonocytes within a distinct pro-inflammatory microenvironment. Our approach introduces a dynamic dimension to single-cell atlases, offering broad applicability across different organs and diseases.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00154-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell atlases provide valuable insights into gene expression states but lack information on cellular dynamics. Understanding cell turnover rates-the time between a cell's birth and death-can shed light on stemness potential and susceptibility to damage. However, measuring turnover rates in human organs has been a significant challenge. In this study, we integrate transcriptomic data from both tissue and shed cells to assign turnover scores to individual cells, leveraging their expression profiles in spatially resolved expression atlases. By performing RNA sequencing on shed cells from the upper gastrointestinal tract, collected via nasogastric tubes, we infer turnover rates in the human esophagus, stomach, and small intestine. In addition, we analyze colonic fecal washes to map turnover patterns in the human large intestine. Our findings reveal a subset of short-lived, interferon-stimulated colonocytes within a distinct pro-inflammatory microenvironment. Our approach introduces a dynamic dimension to single-cell atlases, offering broad applicability across different organs and diseases.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.