Umme Habiba, Muneebah Noor, Masood Ur Rehman Kayani, Lisu Huang
{"title":"Horizontal gene transfers differentially shape the functional potential of the infant gut metagenome.","authors":"Umme Habiba, Muneebah Noor, Masood Ur Rehman Kayani, Lisu Huang","doi":"10.1016/j.lfs.2025.124006","DOIUrl":null,"url":null,"abstract":"<p><p>Horizontal gene transfer (HGT) is a major driver of microbial evolution, influencing the metabolic potential of microbial communities. Despite its significance, the consequences of HGT in shaping the microbial metabolic potential remain poorly understood, particularly in complex environments such as the human gut. This study aimed to assess the impact of HGT in infant gut microbiome from Caesarean section (CSD) and vaginal delivery (VD) groups during the first year of life. At Month 0, CSD infants exhibited a higher number of HGT events than VD infants. However, the numbers converged around Month 2 and remained comparable until Month 9, with no significant differences between groups (p > 0.05). HGT in VD was primarily driven by Coprococcus catus and Ruminococcus sp_5_1_39BFAA, while in CSD, Salmonella enterica and Klebsiella pneumoniae were dominant donors and acceptors. Functional analysis revealed that HGT in VD enriched genes related to carbohydrate metabolism and immune responses, whereas CSD was enriched for metabolic processes and biofilm formation. Additionally, HGT events were associated with Neonatal Intensive Care Unit Admission and diet transitions. These results suggest that HGT events in the VD and CSD groups differently shape the functional potential of the infant gut microbiome, with possible health implications that require further investigation. However, experimental validation is needed to establish a causal link.</p>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":" ","pages":"124006"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.lfs.2025.124006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Horizontal gene transfer (HGT) is a major driver of microbial evolution, influencing the metabolic potential of microbial communities. Despite its significance, the consequences of HGT in shaping the microbial metabolic potential remain poorly understood, particularly in complex environments such as the human gut. This study aimed to assess the impact of HGT in infant gut microbiome from Caesarean section (CSD) and vaginal delivery (VD) groups during the first year of life. At Month 0, CSD infants exhibited a higher number of HGT events than VD infants. However, the numbers converged around Month 2 and remained comparable until Month 9, with no significant differences between groups (p > 0.05). HGT in VD was primarily driven by Coprococcus catus and Ruminococcus sp_5_1_39BFAA, while in CSD, Salmonella enterica and Klebsiella pneumoniae were dominant donors and acceptors. Functional analysis revealed that HGT in VD enriched genes related to carbohydrate metabolism and immune responses, whereas CSD was enriched for metabolic processes and biofilm formation. Additionally, HGT events were associated with Neonatal Intensive Care Unit Admission and diet transitions. These results suggest that HGT events in the VD and CSD groups differently shape the functional potential of the infant gut microbiome, with possible health implications that require further investigation. However, experimental validation is needed to establish a causal link.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.