Wenzhuo Chen, Bowen Ning, Zekun Zhou, Liu Shi, Qiegen Liu
{"title":"TDMAR-Net: A Frequency-Aware Tri-Domain Diffusion Network for CT Metal Artifact Reduction.","authors":"Wenzhuo Chen, Bowen Ning, Zekun Zhou, Liu Shi, Qiegen Liu","doi":"10.1088/1361-6560/ae0efc","DOIUrl":null,"url":null,"abstract":"<p><p>Metal implants and other high-density objects cause significant artifacts in computed tomography (CT) images, hindering clinical diagnosis. Traditional metal artifact reduction methods often leave residual artifacts due to sinogram edges discontinuities. Supervised deep learning approaches struggle due to reliance on paired data, while unsupervised methods often lack multi-domain information. In this paper, we propose TDMAR-Net, a diffusion model-based three-domain neural network that leverages priors from projection, image, and Fourier domains for removing metal artifact and enhancing CT image quality. To enhance the model's learning capability and gradient optimization while preventing reliance on a single data structure, we employ a two-stage training strategy that combines large-scale pretraining with masked data fine-tuning, improving both accuracy and adaptability in metal artifact removal. The specific process is to adjust the weight of the high frequency and low frequency components of the input image through the high-pass filter module in the Fourier domain, and process the image into blocks to extract the diffusion prior information. The prior information is then introduced iteratively into the sinogram and image domains to fill in the metal-induced artifacts. Our method overcomes the challenges of information sharing and complementarity across different domains, ensuring that each domain contributes effectively, thereby enhancing the precision and robustness of metal artifact elimination. Experiments show that our approach superior to existing unsupervised methods, which we have validated on both synthetic and clinical datasets.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ae0efc","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal implants and other high-density objects cause significant artifacts in computed tomography (CT) images, hindering clinical diagnosis. Traditional metal artifact reduction methods often leave residual artifacts due to sinogram edges discontinuities. Supervised deep learning approaches struggle due to reliance on paired data, while unsupervised methods often lack multi-domain information. In this paper, we propose TDMAR-Net, a diffusion model-based three-domain neural network that leverages priors from projection, image, and Fourier domains for removing metal artifact and enhancing CT image quality. To enhance the model's learning capability and gradient optimization while preventing reliance on a single data structure, we employ a two-stage training strategy that combines large-scale pretraining with masked data fine-tuning, improving both accuracy and adaptability in metal artifact removal. The specific process is to adjust the weight of the high frequency and low frequency components of the input image through the high-pass filter module in the Fourier domain, and process the image into blocks to extract the diffusion prior information. The prior information is then introduced iteratively into the sinogram and image domains to fill in the metal-induced artifacts. Our method overcomes the challenges of information sharing and complementarity across different domains, ensuring that each domain contributes effectively, thereby enhancing the precision and robustness of metal artifact elimination. Experiments show that our approach superior to existing unsupervised methods, which we have validated on both synthetic and clinical datasets.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry