{"title":"Designer probiotic-based living drugs for uric acid homeostasis control in hyperuricemic mice and rats.","authors":"Xianyun Gao, Yiyu Jin, Mengyao Liu, Wenbo Ma, Deqiang Kong, Yang Zhou, Lingxue Niu, Jianli Yin, Haibing Chen, Haifeng Ye, Ningzi Guan","doi":"10.1016/j.xcrm.2025.102379","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered probiotics can effectively manage hyperuricemia, a condition characterized by increased serum uric acid (UA) levels, leading to several chronic diseases. In this study, we design a probiotic-based UA level sensing and adjustment (PULSE)-engineered bacterium to maintain UA homeostasis. We generate a UA sensor in the E. coli Nissle 1917 strain based on a UA-responsive transcriptional repressor HucR, integrated with a synthetic promoter. Upon oral administration of engineered probiotics, PULSE cells dynamically regulate urate oxidase expression, reducing UA in the gastrointestinal tract in response to increased serum levels. We have demonstrated the potential of PULSE-engineered bacteria in maintaining UA balance in acute and chronic hyperuricemic mouse and rat models, highlighting the potential for long-term oral administration in reducing hyperuricemia-associated renal damage. Our probiotic-based living drug supports the progress of engineered probiotics as a safe, effective, and patient-friendly alternative to typical therapeutics for chronic disease management.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102379"},"PeriodicalIF":10.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102379","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered probiotics can effectively manage hyperuricemia, a condition characterized by increased serum uric acid (UA) levels, leading to several chronic diseases. In this study, we design a probiotic-based UA level sensing and adjustment (PULSE)-engineered bacterium to maintain UA homeostasis. We generate a UA sensor in the E. coli Nissle 1917 strain based on a UA-responsive transcriptional repressor HucR, integrated with a synthetic promoter. Upon oral administration of engineered probiotics, PULSE cells dynamically regulate urate oxidase expression, reducing UA in the gastrointestinal tract in response to increased serum levels. We have demonstrated the potential of PULSE-engineered bacteria in maintaining UA balance in acute and chronic hyperuricemic mouse and rat models, highlighting the potential for long-term oral administration in reducing hyperuricemia-associated renal damage. Our probiotic-based living drug supports the progress of engineered probiotics as a safe, effective, and patient-friendly alternative to typical therapeutics for chronic disease management.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.