Congruences Modulo 2 for the Eighth-Order Mock Theta Function \(V_1(q)\)

IF 0.7 Q2 MATHEMATICS
Hirakjyoti Das
{"title":"Congruences Modulo 2 for the Eighth-Order Mock Theta Function \\(V_1(q)\\)","authors":"Hirakjyoti Das","doi":"10.1007/s13370-025-01380-z","DOIUrl":null,"url":null,"abstract":"<div><p>Not many of the congruence properties of the eighth-order mock theta function <span>\\(V_1(q)\\)</span>: </p><div><div><span>$$\\begin{aligned} V_1(q):=\\sum _{n=0}^\\infty \\dfrac{q^{(n+1)^2}\\left( -q;q^2\\right) _n}{\\left( q;q^2\\right) _{n+1}}=\\sum _{n=1}^\\infty v_1(n)q^n \\end{aligned}$$</span></div></div><p>have been considered to date. We show that there are self-similarities of the coefficients of <span>\\(V_1(q)\\)</span>. As consequences, we find congruences like the one below. For all <span>\\(n\\ge 0\\)</span> and <span>\\(k\\ge 1\\)</span>, we have </p><div><div><span>$$\\begin{aligned} v_1\\left( 6\\times 29^{2 k} n+ 6\\times 29^{2 k-1} s+\\dfrac{7\\times 29^{2 k-1}+1}{4}\\right) \\equiv 0 \\pmod {2} \\end{aligned}$$</span></div></div><p>for <span>\\(0\\le s&lt; 29\\)</span>, <span>\\(s\\ne 13\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01380-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Not many of the congruence properties of the eighth-order mock theta function \(V_1(q)\):

$$\begin{aligned} V_1(q):=\sum _{n=0}^\infty \dfrac{q^{(n+1)^2}\left( -q;q^2\right) _n}{\left( q;q^2\right) _{n+1}}=\sum _{n=1}^\infty v_1(n)q^n \end{aligned}$$

have been considered to date. We show that there are self-similarities of the coefficients of \(V_1(q)\). As consequences, we find congruences like the one below. For all \(n\ge 0\) and \(k\ge 1\), we have

$$\begin{aligned} v_1\left( 6\times 29^{2 k} n+ 6\times 29^{2 k-1} s+\dfrac{7\times 29^{2 k-1}+1}{4}\right) \equiv 0 \pmod {2} \end{aligned}$$

for \(0\le s< 29\), \(s\ne 13\).

八阶模拟函数模2的同余式 \(V_1(q)\)
到目前为止,八阶模拟θ函数\(V_1(q)\): $$\begin{aligned} V_1(q):=\sum _{n=0}^\infty \dfrac{q^{(n+1)^2}\left( -q;q^2\right) _n}{\left( q;q^2\right) _{n+1}}=\sum _{n=1}^\infty v_1(n)q^n \end{aligned}$$的同余性并不多。我们证明了\(V_1(q)\)的系数具有自相似性。作为结果,我们找到了如下所示的同余。对于所有\(n\ge 0\)和\(k\ge 1\),我们有$$\begin{aligned} v_1\left( 6\times 29^{2 k} n+ 6\times 29^{2 k-1} s+\dfrac{7\times 29^{2 k-1}+1}{4}\right) \equiv 0 \pmod {2} \end{aligned}$$表示\(0\le s< 29\), \(s\ne 13\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信