Pioneering quantum authenticated key agreement through Grover’s algorithm

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tzung-Her Chen, Chien-Ding Lee, Yu-Chieh Chang
{"title":"Pioneering quantum authenticated key agreement through Grover’s algorithm","authors":"Tzung-Her Chen,&nbsp;Chien-Ding Lee,&nbsp;Yu-Chieh Chang","doi":"10.1007/s11128-025-04942-z","DOIUrl":null,"url":null,"abstract":"<div><p>Existing quantum key agreement (QKA) protocols based on Grover’s search algorithm suffer from a critical security vulnerability: the absence of mutual authentication mechanisms between participants. This fundamental flaw enables man-in-the-middle attacks, malicious state injection, and protocol disruption by unauthorized parties. We present the first quantum authenticated key agreement (QAKA) protocol that integrates Grover’s algorithm with comprehensive mutual authentication, addressing the authentication gap in current Grover-based QKA schemes. Our protocol employs a strategically decoy photon insertion mechanism specifically designed for quantum identity verification, combined with a trusted third-party framework that enables both initial authentication and direct mutual verification between communicating parties. Security analysis demonstrates the security against both external eavesdropping and internal authentication attacks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04942-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Existing quantum key agreement (QKA) protocols based on Grover’s search algorithm suffer from a critical security vulnerability: the absence of mutual authentication mechanisms between participants. This fundamental flaw enables man-in-the-middle attacks, malicious state injection, and protocol disruption by unauthorized parties. We present the first quantum authenticated key agreement (QAKA) protocol that integrates Grover’s algorithm with comprehensive mutual authentication, addressing the authentication gap in current Grover-based QKA schemes. Our protocol employs a strategically decoy photon insertion mechanism specifically designed for quantum identity verification, combined with a trusted third-party framework that enables both initial authentication and direct mutual verification between communicating parties. Security analysis demonstrates the security against both external eavesdropping and internal authentication attacks.

通过格罗弗算法的量子认证密钥协议
现有的基于Grover搜索算法的量子密钥协议(QKA)存在一个严重的安全漏洞:参与者之间缺乏相互认证机制。这个基本缺陷允许未经授权的各方进行中间人攻击、恶意状态注入和协议中断。我们提出了第一个量子认证密钥协议(QAKA)协议,该协议将Grover算法与全面的相互认证相结合,解决了当前基于Grover的QKA方案中的认证空白。我们的协议采用了一种专门为量子身份验证设计的战略诱饵光子插入机制,并结合了一个可信的第三方框架,可以在通信各方之间进行初始认证和直接相互验证。安全分析表明,该方案既可以抵御外部窃听攻击,也可以抵御内部认证攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信