{"title":"Pioneering quantum authenticated key agreement through Grover’s algorithm","authors":"Tzung-Her Chen, Chien-Ding Lee, Yu-Chieh Chang","doi":"10.1007/s11128-025-04942-z","DOIUrl":null,"url":null,"abstract":"<div><p>Existing quantum key agreement (QKA) protocols based on Grover’s search algorithm suffer from a critical security vulnerability: the absence of mutual authentication mechanisms between participants. This fundamental flaw enables man-in-the-middle attacks, malicious state injection, and protocol disruption by unauthorized parties. We present the first quantum authenticated key agreement (QAKA) protocol that integrates Grover’s algorithm with comprehensive mutual authentication, addressing the authentication gap in current Grover-based QKA schemes. Our protocol employs a strategically decoy photon insertion mechanism specifically designed for quantum identity verification, combined with a trusted third-party framework that enables both initial authentication and direct mutual verification between communicating parties. Security analysis demonstrates the security against both external eavesdropping and internal authentication attacks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04942-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Existing quantum key agreement (QKA) protocols based on Grover’s search algorithm suffer from a critical security vulnerability: the absence of mutual authentication mechanisms between participants. This fundamental flaw enables man-in-the-middle attacks, malicious state injection, and protocol disruption by unauthorized parties. We present the first quantum authenticated key agreement (QAKA) protocol that integrates Grover’s algorithm with comprehensive mutual authentication, addressing the authentication gap in current Grover-based QKA schemes. Our protocol employs a strategically decoy photon insertion mechanism specifically designed for quantum identity verification, combined with a trusted third-party framework that enables both initial authentication and direct mutual verification between communicating parties. Security analysis demonstrates the security against both external eavesdropping and internal authentication attacks.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.