Jocelyn M. Lavallee, Michelle L. Haddix, Amy Swan, Jamie D. Hoover, M. Francesca Cotrufo
{"title":"Using aridity as an overarching factor to advance understanding of soil organic carbon storage at the continental scale","authors":"Jocelyn M. Lavallee, Michelle L. Haddix, Amy Swan, Jamie D. Hoover, M. Francesca Cotrufo","doi":"10.1007/s10533-025-01273-0","DOIUrl":null,"url":null,"abstract":"<div><p>Efforts to increase soil organic carbon (SOC) storage and predict its responses to climate change demand enhanced understanding of the interrelationships of controls on SOC storage and their dependence on environmental context. To this end, we use structural equation modeling to test a hypothesized structure of controls that includes the mediating influences of plant productivity and soil pH together with the direct effects of climate and soil properties on two contrasting SOC components, particulate (POC) and mineral-associated organic carbon (MAOC), using > 1000 topsoils from across the USA for which POC and MAOC were directly measured or predicted using mid-infrared spectroscopy. We find that separating systems into arid and humid systems by AI (0.65 cutoff) improves understanding controls on POC and MAOC storage, as the relationships between predictors and their effects on POC and MAOC differ between arid and humid systems based on the multigroup structural equation model and random forest models. Net primary productivity is more important for predicting POC and MAOC storage in arid than humid systems, while base cations, pH, and texture are more important in humid than arid systems. Reactive metals (oxalate-extractable Al and Fe) together are the most important predictor of topsoil POC and MAOC storage regardless of climate. We find the negative relationship between MAOC and potential evapotranspiration is stronger than that for POC, suggesting that for the mineral topsoils studied here, MAOC may be more sensitive than POC to increasing aridity. Our results support the concept that SOC storage in arid systems is more constrained by plant inputs than in humid systems, where microbial inhibition via pH and association with minerals and metals are stronger constraints, and point to the sensitivity of MAOC formation to drought. Overall, these results help to clarify the context-dependence of SOC storage and show how representing aridity as an overarching influence over the controls on SOC formation and loss processes can inform its stewardship under climate change.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01273-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01273-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Efforts to increase soil organic carbon (SOC) storage and predict its responses to climate change demand enhanced understanding of the interrelationships of controls on SOC storage and their dependence on environmental context. To this end, we use structural equation modeling to test a hypothesized structure of controls that includes the mediating influences of plant productivity and soil pH together with the direct effects of climate and soil properties on two contrasting SOC components, particulate (POC) and mineral-associated organic carbon (MAOC), using > 1000 topsoils from across the USA for which POC and MAOC were directly measured or predicted using mid-infrared spectroscopy. We find that separating systems into arid and humid systems by AI (0.65 cutoff) improves understanding controls on POC and MAOC storage, as the relationships between predictors and their effects on POC and MAOC differ between arid and humid systems based on the multigroup structural equation model and random forest models. Net primary productivity is more important for predicting POC and MAOC storage in arid than humid systems, while base cations, pH, and texture are more important in humid than arid systems. Reactive metals (oxalate-extractable Al and Fe) together are the most important predictor of topsoil POC and MAOC storage regardless of climate. We find the negative relationship between MAOC and potential evapotranspiration is stronger than that for POC, suggesting that for the mineral topsoils studied here, MAOC may be more sensitive than POC to increasing aridity. Our results support the concept that SOC storage in arid systems is more constrained by plant inputs than in humid systems, where microbial inhibition via pH and association with minerals and metals are stronger constraints, and point to the sensitivity of MAOC formation to drought. Overall, these results help to clarify the context-dependence of SOC storage and show how representing aridity as an overarching influence over the controls on SOC formation and loss processes can inform its stewardship under climate change.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.