Xavier Rivas, Narciso Román-Roy, Bartosz M. Zawora
{"title":"Symmetries and Noether’s theorem for action-dependent multicontact field theories","authors":"Xavier Rivas, Narciso Román-Roy, Bartosz M. Zawora","doi":"10.1007/s11005-025-01995-0","DOIUrl":null,"url":null,"abstract":"<div><p>A geometric framework, called <i>multicontact geometry</i>, has recently been developed to study action-dependent field theories. In this work, we use this framework to analyze symmetries in action-dependent Lagrangian and Hamiltonian field theories, as well as their associated dissipation laws. Specifically, we establish the definitions of conserved and dissipated quantities, define the general symmetries of the field equations and the geometric structure, and examine their properties. The latter ones, referred to as <i>Noether symmetries</i>, lead to the formulation of a version of Noether’s Theorem in this setting, which associates each of these symmetries with the corresponding dissipated quantity and the resulting conservation law.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01995-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01995-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A geometric framework, called multicontact geometry, has recently been developed to study action-dependent field theories. In this work, we use this framework to analyze symmetries in action-dependent Lagrangian and Hamiltonian field theories, as well as their associated dissipation laws. Specifically, we establish the definitions of conserved and dissipated quantities, define the general symmetries of the field equations and the geometric structure, and examine their properties. The latter ones, referred to as Noether symmetries, lead to the formulation of a version of Noether’s Theorem in this setting, which associates each of these symmetries with the corresponding dissipated quantity and the resulting conservation law.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.