{"title":"Wavelet-based adaptive implicit LES/under-resolved DNS of forced isotropic turbulence","authors":"Giuliano De Stefano","doi":"10.1007/s00162-025-00762-0","DOIUrl":null,"url":null,"abstract":"<div><p>The wavelet-based adaptive implicit eddy-resolving simulation approach is demonstrated for linearly forced homogeneous isotropic turbulence at moderate Taylor-Reynolds number. The wavelet-filtered incompressible Navier-Stokes equations are solved using the adaptive multilevel wavelet collocation method for elliptic problems without employing any explicit modeling for the unclosed terms. Instead, the energy dissipation induced by the built-in low-pass filtering associated with the adaptive numerical scheme is effectively exploited, thus mimicking the effect of unresolved subgrid-scale coherent flow structures on the dynamics of the resolved ones. The results of various numerical simulations, performed at different spatial resolutions, and with different filtering strengths, prove both the feasibility and efficacy of the proposed no-model approach for wall-free turbulence, while addressing the corresponding limits of application.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-025-00762-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-025-00762-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The wavelet-based adaptive implicit eddy-resolving simulation approach is demonstrated for linearly forced homogeneous isotropic turbulence at moderate Taylor-Reynolds number. The wavelet-filtered incompressible Navier-Stokes equations are solved using the adaptive multilevel wavelet collocation method for elliptic problems without employing any explicit modeling for the unclosed terms. Instead, the energy dissipation induced by the built-in low-pass filtering associated with the adaptive numerical scheme is effectively exploited, thus mimicking the effect of unresolved subgrid-scale coherent flow structures on the dynamics of the resolved ones. The results of various numerical simulations, performed at different spatial resolutions, and with different filtering strengths, prove both the feasibility and efficacy of the proposed no-model approach for wall-free turbulence, while addressing the corresponding limits of application.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.