Gaussian geometric discord, entanglement and EPR steering of two rotational mirrors in a double-Laguerre-Gaussian cavity optomechanics in the presence of YIG sphere

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Noura Chabar, M’bark Amghar, S. K. Singh, Mohamed Amazioug
{"title":"Gaussian geometric discord, entanglement and EPR steering of two rotational mirrors in a double-Laguerre-Gaussian cavity optomechanics in the presence of YIG sphere","authors":"Noura Chabar,&nbsp;M’bark Amghar,&nbsp;S. K. Singh,&nbsp;Mohamed Amazioug","doi":"10.1007/s11128-025-04936-x","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a theoretical scheme to study stationary Gaussian quantum steering, entanglement, and Gaussian geometric discord (GGD) between two spatially separated rotating mirrors (RMs) in a double-Laguerre-Gaussian cavity (DLGC). Each cavity is driven by a Laguerre-Gaussian (LG) beam. A Yttrium Iron Garnet (YIG) sphere is placed at the intersection of the two cavities. Gaussian quantum steering characterizes steerability, while logarithmic negativity quantifies entanglement. Our analysis reveals that the entanglement between the two Rms is strongly influenced by temperature, magnon mode detuning, the orbital angular momentum (OAM) of the LG modes, magnon-cavity coupling strength, and the mass of the RMs. The magnon-photon coupling emerges as a key parameter for controlling and manipulating the RMs entanglement. A weak mass of the RMs serves to be an advantageous factor that improves the amount of entanglement and makes it strong in the face of thermal effects. GGD increases with rising RMs mass. Within experimentally accessible parameters, we achieve two-way steering. The GGD shows a robustness against thermal effects compared to entanglement and steering.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04936-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a theoretical scheme to study stationary Gaussian quantum steering, entanglement, and Gaussian geometric discord (GGD) between two spatially separated rotating mirrors (RMs) in a double-Laguerre-Gaussian cavity (DLGC). Each cavity is driven by a Laguerre-Gaussian (LG) beam. A Yttrium Iron Garnet (YIG) sphere is placed at the intersection of the two cavities. Gaussian quantum steering characterizes steerability, while logarithmic negativity quantifies entanglement. Our analysis reveals that the entanglement between the two Rms is strongly influenced by temperature, magnon mode detuning, the orbital angular momentum (OAM) of the LG modes, magnon-cavity coupling strength, and the mass of the RMs. The magnon-photon coupling emerges as a key parameter for controlling and manipulating the RMs entanglement. A weak mass of the RMs serves to be an advantageous factor that improves the amount of entanglement and makes it strong in the face of thermal effects. GGD increases with rising RMs mass. Within experimentally accessible parameters, we achieve two-way steering. The GGD shows a robustness against thermal effects compared to entanglement and steering.

YIG球存在下双拉盖尔-高斯腔中两个旋转镜的高斯几何不谐、纠缠和EPR转向
我们提出了一种理论方案来研究双拉盖尔-高斯腔(DLGC)中两个空间分离的旋转镜(RMs)之间的稳态高斯量子转向、纠缠和高斯几何不谐(GGD)。每个空腔由拉盖尔-高斯(LG)光束驱动。一个钇铁石榴石(YIG)球被放置在两个空腔的交叉处。高斯量子转向表征可转向性,而对数负性量化纠缠。我们的分析表明,两个Rms之间的纠缠受到温度、磁振子模式失谐、LG模式的轨道角动量(OAM)、磁振子-腔耦合强度和Rms质量的强烈影响。磁子-光子耦合是控制和操纵RMs纠缠的关键参数。RMs的弱质量是一个有利的因素,它可以提高纠缠量,并使其在面对热效应时更强。GGD随均方根质量的增加而增加。在实验参数范围内,我们实现了双向转向。与纠缠和转向相比,GGD对热效应具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信