Exploring the use of quantum computers for resilience analysis in critical infrastructure networks

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Christoph Brockt-Haßauer, Vyacheslav Shatokhin, Aishvarya Kumar Jain, Corinna Köpke, Alexander Stolz, Mirjam Fehling-Kaschek, Andreas Buchleitner
{"title":"Exploring the use of quantum computers for resilience analysis in critical infrastructure networks","authors":"Christoph Brockt-Haßauer,&nbsp;Vyacheslav Shatokhin,&nbsp;Aishvarya Kumar Jain,&nbsp;Corinna Köpke,&nbsp;Alexander Stolz,&nbsp;Mirjam Fehling-Kaschek,&nbsp;Andreas Buchleitner","doi":"10.1007/s11128-025-04947-8","DOIUrl":null,"url":null,"abstract":"<div><p>Resilience analysis of networks representing critical infrastructure is a computationally hard problem, and the question arises of whether quantum computers may be beneficial for this purpose. On the way towards an answer to this problem, we map a small critical infrastructure network on a quantum network composed of dipole–dipole-coupled nodes. The latter are each equipped with up to three discrete (quantum) states, two of which support the connectivity of the network, while the third state, reachable through nondeterministic spontaneous processes, represents a ‘broken’ node. A finite ‘repair’ time is needed to restore the node. To study the dynamics of such networks on a quantum computer, we derive unitary dilations of Kraus operators governing the evolution of our open quantum network, and generate corresponding quantum circuits using the <span>qiskit</span> interface. We then study the population dynamics of several cases of increasing complexity on the quantum hardware. We discuss how scaling of errors is related to the depth of the quantum circuits. Ultimately, we show that open quantum systems can be used for modelling critical infrastructure, but quantum computers with much lower error rates than currently available are required for a quantitative resilience analysis.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04947-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04947-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Resilience analysis of networks representing critical infrastructure is a computationally hard problem, and the question arises of whether quantum computers may be beneficial for this purpose. On the way towards an answer to this problem, we map a small critical infrastructure network on a quantum network composed of dipole–dipole-coupled nodes. The latter are each equipped with up to three discrete (quantum) states, two of which support the connectivity of the network, while the third state, reachable through nondeterministic spontaneous processes, represents a ‘broken’ node. A finite ‘repair’ time is needed to restore the node. To study the dynamics of such networks on a quantum computer, we derive unitary dilations of Kraus operators governing the evolution of our open quantum network, and generate corresponding quantum circuits using the qiskit interface. We then study the population dynamics of several cases of increasing complexity on the quantum hardware. We discuss how scaling of errors is related to the depth of the quantum circuits. Ultimately, we show that open quantum systems can be used for modelling critical infrastructure, but quantum computers with much lower error rates than currently available are required for a quantitative resilience analysis.

探索在关键基础设施网络中使用量子计算机进行弹性分析
对代表关键基础设施的网络的弹性分析是一个计算困难的问题,而量子计算机是否可能有利于这一目的的问题就出现了。在解决这个问题的过程中,我们将一个小型的关键基础设施网络映射到由偶极子-偶极子耦合节点组成的量子网络上。后者每个都配备了多达三个离散(量子)状态,其中两个支持网络的连通性,而第三个状态,通过不确定的自发过程可到达,代表一个“破碎”节点。需要有限的“修复”时间来恢复节点。为了在量子计算机上研究这种网络的动力学,我们推导了控制开放量子网络演化的Kraus算子的幺正膨胀,并使用qiskit接口生成相应的量子电路。然后,我们研究了量子硬件上几种复杂性增加的情况下的种群动力学。我们讨论了误差的缩放是如何与量子电路的深度相关的。最终,我们表明开放量子系统可用于关键基础设施的建模,但定量弹性分析需要比目前可用的错误率低得多的量子计算机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信