Christoph Brockt-Haßauer, Vyacheslav Shatokhin, Aishvarya Kumar Jain, Corinna Köpke, Alexander Stolz, Mirjam Fehling-Kaschek, Andreas Buchleitner
{"title":"Exploring the use of quantum computers for resilience analysis in critical infrastructure networks","authors":"Christoph Brockt-Haßauer, Vyacheslav Shatokhin, Aishvarya Kumar Jain, Corinna Köpke, Alexander Stolz, Mirjam Fehling-Kaschek, Andreas Buchleitner","doi":"10.1007/s11128-025-04947-8","DOIUrl":null,"url":null,"abstract":"<div><p>Resilience analysis of networks representing critical infrastructure is a computationally hard problem, and the question arises of whether quantum computers may be beneficial for this purpose. On the way towards an answer to this problem, we map a small critical infrastructure network on a quantum network composed of dipole–dipole-coupled nodes. The latter are each equipped with up to three discrete (quantum) states, two of which support the connectivity of the network, while the third state, reachable through nondeterministic spontaneous processes, represents a ‘broken’ node. A finite ‘repair’ time is needed to restore the node. To study the dynamics of such networks on a quantum computer, we derive unitary dilations of Kraus operators governing the evolution of our open quantum network, and generate corresponding quantum circuits using the <span>qiskit</span> interface. We then study the population dynamics of several cases of increasing complexity on the quantum hardware. We discuss how scaling of errors is related to the depth of the quantum circuits. Ultimately, we show that open quantum systems can be used for modelling critical infrastructure, but quantum computers with much lower error rates than currently available are required for a quantitative resilience analysis.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04947-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04947-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Resilience analysis of networks representing critical infrastructure is a computationally hard problem, and the question arises of whether quantum computers may be beneficial for this purpose. On the way towards an answer to this problem, we map a small critical infrastructure network on a quantum network composed of dipole–dipole-coupled nodes. The latter are each equipped with up to three discrete (quantum) states, two of which support the connectivity of the network, while the third state, reachable through nondeterministic spontaneous processes, represents a ‘broken’ node. A finite ‘repair’ time is needed to restore the node. To study the dynamics of such networks on a quantum computer, we derive unitary dilations of Kraus operators governing the evolution of our open quantum network, and generate corresponding quantum circuits using the qiskit interface. We then study the population dynamics of several cases of increasing complexity on the quantum hardware. We discuss how scaling of errors is related to the depth of the quantum circuits. Ultimately, we show that open quantum systems can be used for modelling critical infrastructure, but quantum computers with much lower error rates than currently available are required for a quantitative resilience analysis.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.