Entangled Unruh–DeWitt detectors amplify quantum coherence

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Shu-Min Wu, Yu-Xuan Wang, Wentao Liu
{"title":"Entangled Unruh–DeWitt detectors amplify quantum coherence","authors":"Shu-Min Wu,&nbsp;Yu-Xuan Wang,&nbsp;Wentao Liu","doi":"10.1140/epjc/s10052-025-14832-4","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the quantum coherence between a pair of entangled Unruh–DeWitt detectors, interacting with a quantum field, using a nonperturbative approach in a (3+1)-dimensional Minkowski spacetime with instantaneous switching (<span>\\(\\delta \\)</span>-switching). It is intriguing to observe that for a maximally entangled state, increasing the coupling strength enhances the detectors’ initial quantum coherence while simultaneously causing a monotonic decrease in their initial entanglement. This reveals a remarkable phenomenon: through nonperturbative interactions, entangled Unruh–DeWitt detectors can exhibit a dual effect-amplifying quantum coherence while degrading quantum entanglement. This finding stands in stark contrast to previous studies based on perturbative methods or Gaussian switching functions, which generally concluded that interactions between detectors and the field lead to a simultaneous degradation of quantum coherence and entanglement due to environmental decoherence. Notably, while initially separable detectors successfully harvest quantum coherence from the vacuum, entanglement extraction remains fundamentally prohibited. These contrasting behaviors underscore the fundamental distinction between coherence and entanglement as quantum resources, and highlight their complementary roles in field-detector interactions. \n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14832-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14832-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the quantum coherence between a pair of entangled Unruh–DeWitt detectors, interacting with a quantum field, using a nonperturbative approach in a (3+1)-dimensional Minkowski spacetime with instantaneous switching (\(\delta \)-switching). It is intriguing to observe that for a maximally entangled state, increasing the coupling strength enhances the detectors’ initial quantum coherence while simultaneously causing a monotonic decrease in their initial entanglement. This reveals a remarkable phenomenon: through nonperturbative interactions, entangled Unruh–DeWitt detectors can exhibit a dual effect-amplifying quantum coherence while degrading quantum entanglement. This finding stands in stark contrast to previous studies based on perturbative methods or Gaussian switching functions, which generally concluded that interactions between detectors and the field lead to a simultaneous degradation of quantum coherence and entanglement due to environmental decoherence. Notably, while initially separable detectors successfully harvest quantum coherence from the vacuum, entanglement extraction remains fundamentally prohibited. These contrasting behaviors underscore the fundamental distinction between coherence and entanglement as quantum resources, and highlight their complementary roles in field-detector interactions.

纠缠的Unruh-DeWitt探测器放大了量子相干性
我们在具有瞬时开关(\(\delta \) -开关)的(3+1)维闵可夫斯基时空中,使用非摄动方法探索了一对纠缠的Unruh-DeWitt探测器与量子场相互作用的量子相干性。有趣的是,对于最大纠缠态,增加耦合强度增强了探测器的初始量子相干性,同时导致它们的初始纠缠单调下降。这揭示了一个值得注意的现象:通过非摄动相互作用,纠缠的Unruh-DeWitt探测器可以表现出双重效应-放大量子相干性同时降低量子纠缠。这一发现与之前基于微扰方法或高斯开关函数的研究形成鲜明对比,后者通常得出的结论是,由于环境退相干,探测器和场之间的相互作用会导致量子相干性和纠缠性同时退化。值得注意的是,虽然最初的可分离探测器成功地从真空中收获了量子相干性,但纠缠提取仍然从根本上被禁止。这些截然不同的行为强调了相干和纠缠作为量子资源之间的根本区别,并强调了它们在场-探测器相互作用中的互补作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信