Learning-based Human Relighting: A Survey

IF 28 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Shumin Zhu, Wai Keung Wong, Xingxing Zou
{"title":"Learning-based Human Relighting: A Survey","authors":"Shumin Zhu, Wai Keung Wong, Xingxing Zou","doi":"10.1145/3770081","DOIUrl":null,"url":null,"abstract":"Human relighting refers to the process of adjusting the lighting effects on human subjects in digital images, 3D scenes, and videos to simulate various lighting scenarios, ultimately achieving realistic visual outcomes. This review provides a comprehensive examination of learning-based human relighting techniques. In doing so, it explores mainstream approaches while systematically documenting the development of related hardware and algorithms. Furthermore, it offers a detailed analysis of how learning-based human relighting methods have evolved across image-based, 3D-based, and video-based contexts. In addition, the review presents an in-depth evaluation of the respective advantages and limitations of these approaches, comparing them across key dimensions such as performance, robustness, and functional capabilities. Finally, it discusses current challenges and future research trends in learning-based human relighting. The goal of this review is to serve as a concise reference guide, offering practical support for both human relighting research and its real-world applications.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"99 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3770081","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Human relighting refers to the process of adjusting the lighting effects on human subjects in digital images, 3D scenes, and videos to simulate various lighting scenarios, ultimately achieving realistic visual outcomes. This review provides a comprehensive examination of learning-based human relighting techniques. In doing so, it explores mainstream approaches while systematically documenting the development of related hardware and algorithms. Furthermore, it offers a detailed analysis of how learning-based human relighting methods have evolved across image-based, 3D-based, and video-based contexts. In addition, the review presents an in-depth evaluation of the respective advantages and limitations of these approaches, comparing them across key dimensions such as performance, robustness, and functional capabilities. Finally, it discusses current challenges and future research trends in learning-based human relighting. The goal of this review is to serve as a concise reference guide, offering practical support for both human relighting research and its real-world applications.
基于学习的人类再照明:一项调查
人体重照明是指在数字图像、3D场景、视频中对人体主体的照明效果进行调整,模拟各种照明场景,最终达到逼真的视觉效果的过程。本文综述了基于学习的人类重照明技术。在此过程中,它探索了主流方法,同时系统地记录了相关硬件和算法的发展。此外,它还详细分析了基于学习的人类重照明方法如何在基于图像、基于3d和基于视频的环境中发展。此外,本文还对这些方法各自的优点和局限性进行了深入评估,并从性能、健壮性和功能等关键维度对它们进行了比较。最后,讨论了基于学习的人类照明的当前挑战和未来研究趋势。本文综述的目的是提供简明的参考指南,为人体照明的研究和实际应用提供实际支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信