Maximal regularity of evolving FEMs for parabolic equations on an evolving surface

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Genming Bai, Balázs Kovács, Buyang Li
{"title":"Maximal regularity of evolving FEMs for parabolic equations on an evolving surface","authors":"Genming Bai, Balázs Kovács, Buyang Li","doi":"10.1093/imanum/draf082","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the spatially semi-discrete evolving finite element methods (FEMs) for parabolic equations on a given evolving hypersurface of arbitrary dimensions preserves the maximal $L^{p}$-regularity at the discrete level. We first establish the results on a stationary surface and then extend them, via a perturbation argument, to the case where the underlying surface is evolving under a prescribed velocity field. The proof combines techniques in evolving FEM, properties of Green’s functions on (discretized) closed surfaces, and local energy estimates for FEMs.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"39 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that the spatially semi-discrete evolving finite element methods (FEMs) for parabolic equations on a given evolving hypersurface of arbitrary dimensions preserves the maximal $L^{p}$-regularity at the discrete level. We first establish the results on a stationary surface and then extend them, via a perturbation argument, to the case where the underlying surface is evolving under a prescribed velocity field. The proof combines techniques in evolving FEM, properties of Green’s functions on (discretized) closed surfaces, and local energy estimates for FEMs.
演化曲面上抛物型方程演化有限元的极大正则性
本文证明了在给定的任意维演化超曲面上求解抛物方程的空间半离散演化有限元法在离散水平上保持了极大的$L^{p}$正则性。我们首先在一个固定表面上建立结果,然后通过摄动论证将其推广到下垫面在规定速度场下演化的情况。该证明结合了演化有限元法的技术、(离散)封闭曲面上格林函数的性质以及有限元法的局部能量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信