Real-Time Health Monitoring Using 5G Networks: Deep Learning-Based Architecture for Remote Patient Care.

JMIRx med Pub Date : 2025-10-01 DOI:10.2196/70906
Iqra Batool
{"title":"Real-Time Health Monitoring Using 5G Networks: Deep Learning-Based Architecture for Remote Patient Care.","authors":"Iqra Batool","doi":"10.2196/70906","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Remote patient monitoring systems face critical challenges in real-time vital sign analysis and secure data transmission.</p><p><strong>Objective: </strong>This study aimed to develop a novel architecture integrating deep learning with 5G networks for real-time vital sign monitoring and prediction.</p><p><strong>Methods: </strong>A hybrid convolutional neural network-long short-term memory model with attention mechanisms was optimized for edge deployment using 5G ultrareliable low-latency communication. The system incorporated end-to-end encryption and HIPAA (Health Insurance Portability and Accountability Act) compliance. Performance was evaluated over 3 months using data from 1000 patients.</p><p><strong>Results: </strong>The system demonstrated superior prediction accuracy and significantly reduced latency compared to existing solutions. Performance remained stable under adverse network conditions and across diverse patient populations, supporting thousands of concurrent monitoring sessions.</p><p><strong>Conclusions: </strong>This framework addresses security, scalability, and robustness requirements for clinical implementation, potentially improving patient outcomes through early detection of deteriorating conditions.</p>","PeriodicalId":73558,"journal":{"name":"JMIRx med","volume":"6 ","pages":"e70906"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIRx med","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/70906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Remote patient monitoring systems face critical challenges in real-time vital sign analysis and secure data transmission.

Objective: This study aimed to develop a novel architecture integrating deep learning with 5G networks for real-time vital sign monitoring and prediction.

Methods: A hybrid convolutional neural network-long short-term memory model with attention mechanisms was optimized for edge deployment using 5G ultrareliable low-latency communication. The system incorporated end-to-end encryption and HIPAA (Health Insurance Portability and Accountability Act) compliance. Performance was evaluated over 3 months using data from 1000 patients.

Results: The system demonstrated superior prediction accuracy and significantly reduced latency compared to existing solutions. Performance remained stable under adverse network conditions and across diverse patient populations, supporting thousands of concurrent monitoring sessions.

Conclusions: This framework addresses security, scalability, and robustness requirements for clinical implementation, potentially improving patient outcomes through early detection of deteriorating conditions.

使用5G网络的实时健康监测:基于深度学习的远程患者护理架构。
背景:远程患者监护系统在实时生命体征分析和安全数据传输方面面临严峻挑战。目的:本研究旨在开发一种将深度学习与5G网络相结合的新型架构,用于实时生命体征监测和预测。方法:针对5G超可靠低延迟通信的边缘部署,对具有注意机制的混合卷积神经网络长短期记忆模型进行优化。该系统结合了端到端加密和HIPAA(健康保险可移植性和责任法案)合规性。使用来自1000名患者的数据评估了3个月的表现。结果:与现有解决方案相比,该系统显示出更高的预测准确性和显著降低的延迟。在不利的网络条件下和不同的患者群体中,性能保持稳定,支持数千个并发监测会话。结论:该框架解决了临床实施的安全性、可扩展性和稳健性要求,通过早期发现病情恶化,有可能改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信