Capturing Human Cognitive Styles with Language: Towards an Experimental Evaluation Paradigm.

Vasudha Varadarajan, Syeda Mahwish, Xiaoran Liu, Julia Buffolino, Christian C Luhmann, Ryan L Boyd, H Andrew Schwartz
{"title":"Capturing Human Cognitive Styles with Language: Towards an Experimental Evaluation Paradigm.","authors":"Vasudha Varadarajan, Syeda Mahwish, Xiaoran Liu, Julia Buffolino, Christian C Luhmann, Ryan L Boyd, H Andrew Schwartz","doi":"10.18653/v1/2025.naacl-short.81","DOIUrl":null,"url":null,"abstract":"<p><p>While NLP models often seek to capture cognitive states via language, the validity of predicted states is determined by comparing them to annotations created without access the cognitive states of the authors. In behavioral sciences, cognitive states are instead measured via experiments. Here, we introduce an experiment-based framework for evaluating language-based cognitive style models against human behavior. We explore the phenomenon of decision making, and its relationship to the linguistic style of an individual talking about a recent decision they made. The participants then follow a classical decision-making experiment that captures their cognitive style, determined by how preferences change during a decision exercise. We find that language features, intended to capture cognitive style, can predict participants' decision style with moderate-to-high accuracy (AUC ~ 0.8), demonstrating that cognitive style can be partly captured and revealed by discourse patterns.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2025 ","pages":"966-979"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2025.naacl-short.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While NLP models often seek to capture cognitive states via language, the validity of predicted states is determined by comparing them to annotations created without access the cognitive states of the authors. In behavioral sciences, cognitive states are instead measured via experiments. Here, we introduce an experiment-based framework for evaluating language-based cognitive style models against human behavior. We explore the phenomenon of decision making, and its relationship to the linguistic style of an individual talking about a recent decision they made. The participants then follow a classical decision-making experiment that captures their cognitive style, determined by how preferences change during a decision exercise. We find that language features, intended to capture cognitive style, can predict participants' decision style with moderate-to-high accuracy (AUC ~ 0.8), demonstrating that cognitive style can be partly captured and revealed by discourse patterns.

用语言捕捉人类的认知风格:一个实验性的评价范式。
虽然NLP模型经常试图通过语言捕捉认知状态,但预测状态的有效性是通过将它们与没有访问作者认知状态的注释进行比较来确定的。在行为科学中,认知状态是通过实验来测量的。在这里,我们介绍了一个基于实验的框架来评估基于语言的认知风格模型与人类行为。我们探讨了决策现象,以及它与个人谈论他们最近做出的决定的语言风格的关系。然后,参与者进行了一个经典的决策实验,该实验捕捉了他们的认知风格,决定于他们在决策练习中偏好的变化。研究发现,意在捕捉认知风格的语言特征能够以中至高精度(AUC ~ 0.8)预测被试的决策风格,表明认知风格可以部分被话语模式捕捉和揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信