SURROGATE SELECTION OVERSAMPLES EXPANDED T CELL CLONOTYPES.

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2025-09-01 Epub Date: 2025-08-28 DOI:10.1214/25-aoas2032
Peng Yu, Yumin Lian, Elliot Xie, Cindy L Zuleger, Richard J Albertini, Mark R Albertini, Michael A Newton
{"title":"SURROGATE SELECTION OVERSAMPLES EXPANDED T CELL CLONOTYPES.","authors":"Peng Yu, Yumin Lian, Elliot Xie, Cindy L Zuleger, Richard J Albertini, Mark R Albertini, Michael A Newton","doi":"10.1214/25-aoas2032","DOIUrl":null,"url":null,"abstract":"<p><p>Surrogate selection is an experimental design that without sequencing any DNA can restrict a sample of cells to those carrying certain genomic mutations. In immunological disease studies, this design may provide a relatively easy approach to enrich a lymphocyte sample with cells relevant to the disease response because the emergence of neutral mutations associates with the proliferation history of clonal subpopulations. A statistical analysis of clonotype sizes provides a structured, quantitative perspective on this useful property of surrogate selection. Our model specification couples within-clonotype birth-death processes with an exchangeable model across clonotypes. Beyond enrichment questions about the surrogate selection design, our framework enables a study of sampling properties of elementary sample diversity statistics; it also points to new statistics that may usefully measure the burden of somatic genomic alterations associated with clonal expansion. We examine statistical properties of immunological samples governed by the coupled model specification, and we illustrate calculations in surrogate selection studies of melanoma and in single-cell genomic studies of T cell repertoires.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"19 3","pages":"1884-1907"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/25-aoas2032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Surrogate selection is an experimental design that without sequencing any DNA can restrict a sample of cells to those carrying certain genomic mutations. In immunological disease studies, this design may provide a relatively easy approach to enrich a lymphocyte sample with cells relevant to the disease response because the emergence of neutral mutations associates with the proliferation history of clonal subpopulations. A statistical analysis of clonotype sizes provides a structured, quantitative perspective on this useful property of surrogate selection. Our model specification couples within-clonotype birth-death processes with an exchangeable model across clonotypes. Beyond enrichment questions about the surrogate selection design, our framework enables a study of sampling properties of elementary sample diversity statistics; it also points to new statistics that may usefully measure the burden of somatic genomic alterations associated with clonal expansion. We examine statistical properties of immunological samples governed by the coupled model specification, and we illustrate calculations in surrogate selection studies of melanoma and in single-cell genomic studies of T cell repertoires.

选择扩增的t细胞克隆型。
替代选择是一种实验设计,不需要对任何DNA进行测序,就可以将细胞样本限制在携带某些基因组突变的细胞中。在免疫学疾病研究中,由于中性突变的出现与克隆亚群的增殖历史相关,这种设计可能提供了一种相对简单的方法来丰富与疾病反应相关的淋巴细胞样本。克隆型大小的统计分析提供了一个结构化的,定量的角度对这一有用的属性选择代孕。我们的模型规范在克隆型出生-死亡过程中与跨克隆型的可交换模型耦合。除了关于代理选择设计的丰富问题之外,我们的框架还可以研究基本样本多样性统计的抽样特性;它还指出了新的统计数据,可以有效地测量与克隆扩增相关的体细胞基因组改变的负担。我们研究了由耦合模型规范控制的免疫样本的统计特性,并说明了黑色素瘤的替代选择研究和T细胞谱的单细胞基因组研究中的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信