Land-use legacies shape soil microbial communities and nutrient cycling functions in rotational shifting cultivation fields of Northern Thailand.

IF 4 3区 生物学 Q2 ECOLOGY
Noppol Arunrat, Wuttichai Mhuantong, Sukanya Sereenonchai
{"title":"Land-use legacies shape soil microbial communities and nutrient cycling functions in rotational shifting cultivation fields of Northern Thailand.","authors":"Noppol Arunrat, Wuttichai Mhuantong, Sukanya Sereenonchai","doi":"10.1007/s00248-025-02598-x","DOIUrl":null,"url":null,"abstract":"<p><p>How land-use history-particularly in contrasting systems such as rotational shifting cultivation (RSC) and continuously fallow (CF) fields-influences soil microbial communities and their biogeochemical functions remains insufficiently understood. In this study, shotgun metagenomic sequencing was used to compare the taxonomic composition and functional gene profiles of soils under RSC and CF systems in Northern Thailand. The results revealed distinct microbial assemblages and metabolic potentials shaped by land-use legacy. RSC soils were characterized by a higher abundance of nitrifiers and nitrogen-fixing taxa, including Nitrosocosmicus and Streptomyces, along with enriched genes involved in nitrification (e.g., amoC_B, nxrB) and nitrogen fixation (nifD, nifK), reflecting an enhanced potential for nitrogen acquisition and retention. In contrast, CF soils showed enrichment in Bradyrhizobium, Halobaculum, and Russula, and exhibited higher expression of denitrification-related genes (norB, narJ), suggesting increased nitrogen loss via gaseous emissions. Functional genes related to phosphate metabolism (phoX, glpQ) and nutrient signal transduction were more abundant in RSC soils, indicating active nutrient cycling in response to recent disturbance. Conversely, CF soils demonstrated broader metabolic capabilities, including genes for sulfur oxidation and redox regulation, suggesting microbial adaptation to more stable but nutrient-limited conditions. These findings demonstrate that land-use legacies strongly influence microbial composition and function, with important implications for nutrient cycling and soil fertility restoration in shifting cultivation landscapes.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"102"},"PeriodicalIF":4.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02598-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

How land-use history-particularly in contrasting systems such as rotational shifting cultivation (RSC) and continuously fallow (CF) fields-influences soil microbial communities and their biogeochemical functions remains insufficiently understood. In this study, shotgun metagenomic sequencing was used to compare the taxonomic composition and functional gene profiles of soils under RSC and CF systems in Northern Thailand. The results revealed distinct microbial assemblages and metabolic potentials shaped by land-use legacy. RSC soils were characterized by a higher abundance of nitrifiers and nitrogen-fixing taxa, including Nitrosocosmicus and Streptomyces, along with enriched genes involved in nitrification (e.g., amoC_B, nxrB) and nitrogen fixation (nifD, nifK), reflecting an enhanced potential for nitrogen acquisition and retention. In contrast, CF soils showed enrichment in Bradyrhizobium, Halobaculum, and Russula, and exhibited higher expression of denitrification-related genes (norB, narJ), suggesting increased nitrogen loss via gaseous emissions. Functional genes related to phosphate metabolism (phoX, glpQ) and nutrient signal transduction were more abundant in RSC soils, indicating active nutrient cycling in response to recent disturbance. Conversely, CF soils demonstrated broader metabolic capabilities, including genes for sulfur oxidation and redox regulation, suggesting microbial adaptation to more stable but nutrient-limited conditions. These findings demonstrate that land-use legacies strongly influence microbial composition and function, with important implications for nutrient cycling and soil fertility restoration in shifting cultivation landscapes.

Abstract Image

Abstract Image

Abstract Image

泰国北部轮作农田土地利用遗产影响土壤微生物群落和养分循环功能。
土地利用历史——特别是在轮作轮作(RSC)和连续休耕(CF)田等对比系统中——如何影响土壤微生物群落及其生物地球化学功能仍然没有得到充分的了解。本研究采用散弹枪宏基因组测序方法比较了泰国北部RSC和CF系统下土壤的分类组成和功能基因谱。结果表明,不同的微生物组合和代谢潜力受土地利用遗产的影响。RSC土壤具有丰富的硝化菌和固氮类群,包括亚硝基菌(Nitrosocosmicus)和链霉菌(Streptomyces),以及丰富的硝化基因(如amoC_B, nxrB)和固氮基因(nifD, nifK),反映了氮的获取和保留潜力增强。相比之下,CF土壤中缓生根瘤菌、盐杆菌和Russula富集,反硝化相关基因(norB, narJ)表达较高,表明气体排放导致氮损失增加。与磷代谢(phoX, glpQ)和营养信号转导相关的功能基因在RSC土壤中更丰富,表明对近期干扰的响应积极的养分循环。相反,CF土壤表现出更广泛的代谢能力,包括硫氧化和氧化还原调节基因,表明微生物适应更稳定但营养有限的条件。这些研究结果表明,土地利用遗产强烈影响微生物组成和功能,对迁移耕作景观中养分循环和土壤肥力恢复具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信